941 resultados para Dopant concentrations
Resumo:
Doping is an effective approach that allows for the intrinsic modification of the electrical and chemical properties of nanomaterials. Recently, a graphene and carbon nanotube hybrid structure (GNHS) has been reported, which extends the excellent properties of carbon-based materials to three dimensions. In this paper, we carried out a first-time investigation on the tensile properties of the hybrid structures with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young’s modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young’s modulus or yield strength could be observed. For all considered samples, the failure is found to initiate at the region where the nanotubes and graphene sheets are connected. After failure, monatomic chains are normally observed around the failure region. Dangling graphene layers without the separation of a residual CNT wall are found to adhere to each other after failure with a distance of about 3.4 Å. This study provides a fundamental understanding of the tensile properties of the doped graphene–nanotube hybrid structures, which will benefit the design and also the applications of graphene-based hybrid materials.
Resumo:
Er3+/Tm3+/Yb3+ tricloped oxyfluoride glass ceramics was synthesized in a general way. Under 980 nm LD pumping, intense red, green and blue upconversion was obtained. And with those primary colors, multicolor luminescence was observed in oxyfluoride glass ceramics with various dopant concentrations. The red and green upconversion is consistent with F-4(9/2) -> I-4(15/2) and H-2(11/2), S-4(3/2) -> I-4(15/2) transition of Er3+ respectively. While the blue upconversion originates from (1)G(4) -> H-3(6) transition of Tm3+. This is similar to that in Er3+/Yb3+ and/or Tm3+/Yb3+ codoped glass ceramics. However the upconversion of Tm3+ is enhanced by the energy transfer between Er3+ and Tm3+. (c) 2006 Published by Elsevier B.V.
Resumo:
应用中频感应提拉法生长出不同掺杂浓度的Yb:FAP激光晶体,运用电感耦合等离子体原子发射光谱仪(ICP-AES)测定了Yb^3+离子存Yb:FAP晶体中的分凝系数约为0.03。随着晶体的生长,晶体中Yb^3+离子的轴向浓度逐渐增大。研究Yb:FAP晶体在77K和300K温度下的吸收光谱发现,振动谱的变化主要是由电子-声子近共振耦合作用引起的。系统地研究了不同Yb^3+离子掺杂浓度Yb:FAP晶体的吸收光谱和荧光光谱。通过吸收光谱的测量计算了晶体的吸收截面。Yb:FAP晶体在904nm和982nm处存在Yb
Resumo:
Transmission of electromagnetic wave in a heavily doped n-type GaAs film is studied theoretically. From the calculations, an extraordinary transmission of p-polarized waves through the film with subwavelength grooves on both surfaces at mid-infrared frequencies is found. This extraordinary transmission is attributed to the coupling of the surface-plasmon polariton modes and waveguide modes. By selecting a set of groove parameters, the transmission is optimized to a maximum. Furthermore, the transmission can be tuned by dopant concentrations. As the dopant concentration increases, the peak position shifts to higher frequency but the peak value decreases.
Resumo:
Ternary complexes of europium and terbium with paraaminobenzoic acid and 1,10-phenanthroline (Eu(p-ABA)(3). phen . 2H(2)O and Tb(p-ABA)(3). phen . 2H(2)O, where p-HABA = paraaminobenzoic acid and phen = 1,10-phenanthroline) were introduced into a silica matrix by sol-gel method. The luminescence behavior of the complexes in silica gels was studied in comparison with the. corresponding solid-state complexes by means of emission, excitation spectra, and Lifetimes. Within the range of effective dopant concentrations, the luminescence intensities of rare-earth complexes in silica gel increase with the increasing of their dopant concentration. The lifetimes of rare-earth ions (Eu3+ and-Tb3+) in silica gel doped with europium and terbium complexes become longer than those in pure complexes. Very small amounts of rare-earth complexes doped in silica gel matrix can exhibit excellent luminescence properties, (C) 1998 Elsevier Science Ltd.
Resumo:
We investigated the electron paramagnetic resonance (EPR) spectra of undoped, FeCl3- and iodine-doped poly(para-phenylene) (PPP) prepared by the method of Kovacic. EPR measurements are used to characterize electronic states relevant for carrier transport in doped PPP. We found a novel dependence of room temperature linewidth (DELTAH(pp)) and spin density (N(spin)) on the dopant concentrations for iodine-doped PPP, namely, DELTAH(pp) first decreased and increased, and then decreased and increased again with increasing iodine concentration in the iodine-doped PPP. The corresponding value of N(spin) first increased and decreased, and then increased and decreased again with increasing iodine concentration in PPP. However, the changes in DELTAH(pp) and N(spin) with FeCl3 concentration in FeCl3-doped PPP differ from those of iodine-doped PPP. We explain the different EPR properties in FeCl3-doped and iodine-doped PPP.
Resumo:
Ceria (CeO2) and ceria-based composite materials, especially Ce1-xZrxO2 solid solutions, possess a wide range of applications in many important catalytic processes, such as three-way catalysts, owing to their excellent oxygen storage capacity (OSC) through the oxygen vacancy formation and refilling. Much of this activity has focused on the understanding of the electronic and structural properties of defective CeO2 with and without doping, and comprehending the determining factor for oxygen vacancy formation and the rule to tune the formation energy by doping has constituted a central issue in material chemistry related to ceria. However, the calculation on electronic structures and the corresponding relaxation patterns in defective CeO2-x oxides remains at present a challenge in the DFT framework. A pragmatic approach based on density functional theory with the inclusion of on-site Coulomb correction, i.e. the so-called DFT + U technique, has been extensively applied in the majority of recent theoretical investigations. Firstly, we review briefly the latest electronic structure calculations of defective CeO2(111), focusing on the phenomenon of multiple configurations of the localized 4f electrons, as well as the discussions of its formation mechanism and the catalytic role in activating the O-2 molecule. Secondly, aiming at shedding light on the doping effect on tuning the oxygen vacancy formation in ceria-based solid solutions, we summarize the recent theoretical results of Ce1-xZrxO2 solid solutions in terms of the effect of dopant concentrations and crystal phases. A general model on O vacancy formation is also discussed; it consists of electrostatic and structural relaxation terms, and the vital role of the later is emphasized. Particularly, we discuss the crucial role of the localized structural relaxation patterns in determining the superb oxygen storage capacity in kappa-phase Ce1-xZr1-xO2. Thirdly, we briefly discuss some interesting findings for the oxygen vacancy formation in pure ceria nanoparticles (NPs) uncovered by DFT calculations and compare those with the bulk or extended surfaces of ceria as well as different particle sizes, emphasizing the role of the electrostatic field in determining the O vacancy formation.
Resumo:
A ~si MAS NMR study of spin-lattice relaxation behaviour
in paramagnetic-doped crystalline silicates was undertaken,
using synthetic magnesium orthosilicate (forsterite) and
synthetic zinc orthosilicate (willemite) doped with 0.1% to
20% of Co(II), Ni(II), or CU(II), as experimental systems.
All of the samples studied exhibited a longitudinal
magnetization return to the Boltzmann distribution of nuclear
spin states which followed a stretched-exponential function of
time:
Y=exp [- (tjTn) n], O
Resumo:
The electron donating properties, surface acidity/basicity and catalytic activity of lanthana for various dopant concentrations of strontium are reported at two activation temperatures. The catalytic activity has been correlated with electron donating properties and surface acidity/basicity of the oxide.
Resumo:
The development of protocols for the identification of metal phosphates in phosphate-treated, metal-contaminated soils is a necessary yet problematical step in the validation of remediation schemes involving immobilization of metals as phosphate phases. The potential for Raman spectroscopy to be applied to the identification of these phosphates in soils has yet to be fully explored. With this in mind, a range of synthetic mixed-metal hydroxylapatites has been characterized and added to soils at known concentrations for analysis using both bulk X-ray powder diffraction (XRD) and Raman spectroscopy. Mixed-metal hydroxylapatites in the binary series Ca-Cd, Ca-Pb, Ca-Sr and Cd-Pb synthesized in the presence of acetate and carbonate ions, were characterized using a range of analytical techniques including XRD, analytical scanning electron microscopy (SEM), infrared spectroscopy (IR), inductively coupled plasma-atomic emission spectrometry (ICP-AES) and Raman spectroscopy. Only the Ca-Cd series displays complete solid solution, although under the synthesis conditions of this study the Cd-5(PO4)(3)OH end member could not be synthesized as a pure phase. Within the Ca-Cd series the cell parameters, IR active modes and Raman active bands vary linearly as a function of Cd content. X-ray diffraction and extended X-ray absorption fine structure spectroscopy (EXAFS) suggest that the Cd is distributed across both the Ca(1) and Ca(2) sites, even at low Cd concentrations. In order to explore the likely detection limits for mixed-metal phosphates in soils for XRD and Raman spectroscopy, soils doped with mixed-metal hydroxylapatites at concentrations of 5, 1 and 0.5 wt.% were then studied. X-ray diffraction could not confirm unambiguously the presence or identity of mixed-metal phosphates in soils at concentrations below 5 wt.%. Raman spectroscopy proved a far more sensitive method for the identification of mixed-metal hydroxylapatites in soils, which could positively identify the presence of such phases in soils at all the dopant concentrations used in this study. Moreover, Raman spectroscopy could also provide an accurate assessment of the degree of chemical substitution in the hydroxylapatites even when present in soils at concentrations as low as 0.1%.
Resumo:
Upconversion fluorescence emission of Er3+/Yb3+-doped Bi2O3-Na2O-Nb2O5-GeO2 heavy metal glass samples excited at 1.06 mu m is experimentally investigated. The results reveal the existence of intense emission bands centered around 520, 545, and 655 nm. The germano-niobate based host glass presents high transparency in the region of 400-2700 nm, the capability of incorporating high dopant concentrations, high melting temperature, and large resistance to atmospheric moisture. The observed intensity of the green fluorescence emission, suggested that the niobium based host glass material plays an important role in the efficiency of the upconversion process. Emission lines centered at 425, 483, 503, 608, and 628 nm were also observed. (C) 1997 American Institute of Physics.
Resumo:
The influence of Ta concentration on the stability of BaCe 0.9-xTaxY0.1O3-δ (where x=0.01, 0.03 and 0.05) powders and sintered samples in CO2, their microstructure and electrical properties were investigated. The ceramic powders were synthesized by the method of solid state reaction, uniaxially pressed and sintered at 1550 °C to form dense electrolyte pellets. A significant stability in CO2 indicated by the X-ray analysis performed was observed for the samples with x≥0.03. The electrical conductivities determined by impedance measurements in the temperature range of 550-750 °C and in various atmospheres (dry argon, wet argon and wet hydrogen) increased with temperature but decreased with Ta concentration. The highest conductivities were observed in the wet hydrogen atmosphere, followed by those in wet argon, while the lowest were obtained in the dry argon atmosphere for each dopant concentration. The composition with Ta content of 3 mol% showed satisfactory characteristics: good resistance to CO2 in extreme testing conditions, while a somewhat reduced electrical conductivity is still comparable with that of BaCe0.9Y0.1O3-δ. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Germanium (Ge) nanowires are of current research interest for high speed nanoelectronic devices due to the lower band gap and high carrier mobility compatible with high K-dielectrics and larger excitonic Bohr radius ensuing a more pronounced quantum confinement effect [1-6]. A general way for the growth of Ge nanowires is to use liquid or a solid growth promoters in a bottom-up approach which allow control of the aspect ratio, diameter, and structure of 1D crystals via external parameters, such as precursor feedstock, temperature, operating pressure, precursor flow rate etc [3, 7-11]. The Solid-phase seeding is preferred for more control processing of the nanomaterials and potential suppression of the unintentional incorporation of high dopant concentrations in semiconductor nanowires and unrequired compositional tailing of the seed-nanowire interface [2, 5, 9, 12]. There are therefore distinct features of the solid phase seeding mechanism that potentially offer opportunities for the controlled processing of nanomaterials with new physical properties. A superior control over the growth kinetics of nanowires could be achieved by controlling the inherent growth constraints instead of external parameters which always account for instrumental inaccuracy. The high dopant concentrations in semiconductor nanowires can result from unintentional incorporation of atoms from the metal seed material, as described for the Al catalyzed VLS growth of Si nanowires [13] which can in turn be depressed by solid-phase seeding. In addition, the creation of very sharp interfaces between group IV semiconductor segments has been achieved by solid seeds [14], whereas the traditionally used liquid Au particles often leads to compositional tailing of the interface [15] . Korgel et al. also described the superior size retention of metal seeds in a SFSS nanowire growth process, when compared to a SFLS process using Au colloids [12]. Here in this work we have used silver and alloy seed particle with different compositions to manipulate the growth of nanowires in sub-eutectic regime. The solid seeding approach also gives an opportunity to influence the crystallinity of the nanowires independent of the substrate. Taking advantage of the readily formation of stacking faults in metal nanoparticles, lamellar twins in nanowires could be formed.
Resumo:
We have carried out first-principles spin polarized calculations to obtain comprehensive information regarding the structural, magnetic, and electronic properties of the Mn-doped GaSb compound with dopant concentrations: x¼0.062, 0.083, 0.125, 0.25, and 0.50. The plane-wave pseudopotential method was used in order to calculate total energies and electronic structures. It was found that the MnGa substitution is the most stable configuration with a formation energy of 1.60 eV/Mn-atom. The calculated density of states shows that the half-metallic ferromagnetism is energetically stable for all dopant concentrations with a total magnetization of about 4.0 lB/Mn-atom. The results indicate that the magnetic ground state originates from the strong hybridization between Mn-d and Sb-p states, which agree with previous studies on Mn-doped wide gap semiconductors. This study gives new clues to the fabrication of diluted magnetic semiconductors