890 resultados para Dopamine transporter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Migraine is a common, genetically influenced neurovascular disorder. The dopamine transporter gene is a candidate for migraine association studies. This study tested a functionally linked variable number tandem repeat (VNTR) in intron 8 of the dopamine transporter gene (DATInt8) in 550 migraine cases (401 with aura, 149 without aura) and 550 non-migraine controls. Chi-squared analysis of the DATInt8 revealed that the allele and genotype frequency distributions for migraine cases (including subtype analysis) and controls were not different (P > 0.1). These findings offer no evidence for an association of the DATInt8 with migraine with and without aura and therefore do not implicate the dopamine transporter gene as a modifier of migraine risk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to inhibit unwanted actions is a heritable executive function that may confer risk to disorders such as attention deficit hyperactivity disorder (ADHD). Converging evidence from pharmacology and cognitive neuroscience suggests that response inhibition is instantiated within frontostriatal circuits of the brain with patterns of activity that are modulated by the catecholamines dopamine and noradrenaline. A total of 405 healthy adult participants performed the stop-signal task, a paradigmatic measure of response inhibition that yields an index of the latency of inhibition, termed the stop-signal reaction time (SSRT). Using this phenotype, we tested for genetic association, performing high-density single-nucleotide polymorphism mapping across the full range of autosomal catecholamine genes. Fifty participants also underwent functional magnetic resonance imaging to establish the impact of associated alleles on brain and behaviour. Allelic variation in polymorphisms of the dopamine transporter gene (SLC6A3: rs37020; rs460000) predicted individual differences in SSRT, after corrections for multiple comparisons. Furthermore, activity in frontal regions (anterior frontal, superior frontal and superior medial gyri) and caudate varied additively with the T-allele of rs37020. The influence of genetic variation in SLC6A3 on the development of frontostriatal inhibition networks may represent a key risk mechanism for disorders of behavioural inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positron emission tomography (PET) is an imaging technique in which radioactive positron-emitting tracers are used to study biochemical and physiological functions in humans and in animal experiments. The use of PET imaging has increased rapidly in recent years, as have special requirements in the fields of neurology and oncology for the development of syntheses for new, more specific and selective radiotracers. Synthesis development and automation are necessary when high amounts of radioactivity are needed for multiple PET studies. In addition, preclinical studies using experimental animal models are necessary for evaluating the suitability of new PET tracers for humans. For purification and analysing the labelled end-product, an effective radioanalytical method combined with an optimal radioactivity detection technique is of great importance. In this study, a fluorine-18 labelling synthesis method for two tracers was developed and optimized, and the usefulness of these tracers for possible prospective human studies was evaluated. N-(3-[18F]fluoropropyl)-2β-carbomethoxy-3β-(4-fluorophenyl)nortropane ([18F]β-CFT-FP) is a candidate PET tracer for the dopamine transporter (DAT), and 1H-1-(3-[18F]fluoro-2-hydroxypropyl)-2-nitroimidazole ([18F]FMISO) is a well-known hypoxia marker for hypoxic but viable cells in tumours. The methodological aim of this thesis was to evaluate the status of thin-layer chromatography (TLC) combined with proper radioactivity detection measurement systems as a radioanalytical method. Three different detection methods of radioactivity were compared: radioactivity scanning, film autoradiography, and digital photostimulated luminescence (PSL) autoradiography. The fluorine-18 labelling synthesis for [18F]β-CFT-FP was developed and carbon-11 labelled [11C]β-CFT-FP was used to study the specificity of β-CFT-FP for the DAT sites in human post-mortem brain slices. These in vitro studies showed that β-CFT-FP binds to the caudate-putamen, an area rich of DAT. The synthesis of fluorine-18 labelled [18F]FMISO was optimized, and the tracer was prepared using an automated system with good and reproducible yields. In preclinical studies, the action of the radiation sensitizer estramustine phosphate on the radiation treatment and uptake of [18F]FMISO was evaluated, with results of great importance for later human studies. The methodological part of this thesis showed that radioTLC is the method of choice when combined with an appropriate radioactivity detection technique. Digital PSL autoradiography proved to be the most appropriate when compared to the radioactivity scanning and film autoradiography methods. The very high sensitivity, good resolution, and wide dynamic range of digital PSL autoradiography are its advantages in detection of β-emitting radiolabelled substances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Positron emission tomography (PET) is a molecular imaging technique that utilises radiopharmaceuticals (radiotracers) labelled with a positron-emitting radionuclide, such as fluorine-18 (18F). Development of a new radiotracer requires an appropriate radiosynthesis method: the most common of which with 18F is nucleophilic substitution with [18F]fluoride ion. The success of the labelling reaction is dependent on various factors such as the reactivity of [18F]fluoride, the structure of the target compound in addition to the chosen solvent. The overall radiosynthesis procedure must be optimised in terms of radiochemical yield and quality of the final product. Therefore, both quantitative and qualitative radioanalytical methods are essential in developing radiosynthesis methods. Furthermore, biological properties of the tracer candidate need to be evaluated by various pre-clinical studies in animal models. In this work, the feasibility of various nucleophilic 18F-fluorination strategies were studied and a labelling method for a novel radiotracer, N-3-[18F]fluoropropyl-2beta-carbomethoxy-3beta-4-fluorophenyl)nortropane ([18F]beta-CFT-FP), was optimised. The effect of solvent was studied by labelling a series of model compounds, 4-(R1-methyl)benzyl R2-benzoates. 18F-Fluorination reactions were carried out both in polar aprotic and protic solvents (tertiary alcohols). Assessment of the 18F-fluorinated products was studied by mass spectrometry (MS) in addition to conventional radiochromatographic methods, using radiosynthesis of 4-[18F]fluoro-N-[2-[1-(2-methoxyphenyl)-1-piperazinyl]ethyl-N-2-pyridinyl-benzamide (p-[18F]MPPF) as a model reaction. Labelling of [18F]beta-CFT-FP was studied using two 18F-fluoroalkylation reagents, [18F]fluoropropyl bromide and [18F]fluoropropyl tosylate, as well as by direct 18F-fluorination of sulfonate ester precursor. Subsequently, the suitability of [18F]beta-CFT-FP for imaging dopamine transporter (DAT) was evaluated by determining its biodistribution in rats. The results showed that protic solvents can be useful co-solvents in aliphatic 18F-fluorinations, especially in the labelling of sulfonate esters. Aromatic 18F-fluorination was not promoted in tert-alcohols. Sensitivity of the ion trap MS was sufficient for the qualitative analysis of the 18F-labelled products; p-[18F]MPPF was identified from the isolated product fraction with a mass-to-charge (m/z) ratio of 435 (i.e. protonated molecule [M+H]+). [18F]beta-CFT-FP was produced most efficiently via [18F]fluoropropyl tosylate, leading to sufficient radiochemical yield and specific radioactivity for PET studies. The ex vivo studies in rats showed fast kinetics as well as the specific uptake of [18F]beta-CFT-FP to the DAT rich brain regions. Thus, it was concluded that [18F]beta-CFT-FP has potential as a radiotracer for imaging DAT by PET.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sigma (σ) receptors are well established as a non-opioid, non-phencyclidine, and haloperidol-sensitive receptor family with its own binding profile and a characteristic distribution in the central nervous system (CNS) as well as in endocrine, immune, and some peripheral tissues. Two σ receptors subtypes, termed σ1 and σ2, have been pharmacologically characterized, but, to date, only the σ1 has also been cloned. Activation of σ1 receptors alter several neurotransmitter systems and dopamine (DA) neurotrasmission has been often shown to constitute an important target of σ receptors in different experimental models; however the exact role of σ1 receptor in dopaminergic neurotransmission remains unclear. The DA transporter (DAT) modulates the spatial and temporal aspects of dopaminergic synaptic transmission and interprer the primary mechanism by wich dopaminergic neurons terminate the signal transmission. For this reason present studies have been focused in understanding whether, in cell models, the human subtype of σ1 (hσ1) receptor is able to directly modulate the human DA transporter (hDAT). In the first part of this thesis, HEK-293 and SH-SY5Y cells were permanently transfected with the hσ1 receptor. Subsequently, they were transfected with another plasmid for transiently expressing the hDAT. The hDAT activity was estimated using the described [3H]DA uptake assay and the effects of σ ligands were evaluated by measuring the uptaken [3H]DA after treating the cells with known σ agonists and antagonists. Results illustrated in this thesis demonstrate that activation of overexpressed hσ1 receptors by (+)-pentazocine, the σ1 agonist prototype, determines an increase of 40% of the extracellular [3H]DA uptake, in comparison to non-treated controls and the σ1 antagonists BD-1047 and NE-100 prevent the positive effect of (+)-pentazocine on DA reuptake DA is likely to be considered a neurotoxic molecule. In fact, when levels of intracellular DA abnormally invrease, vescicles can’t sequester the DA which is metabolized by MAO (A and B) and COMT with consequent overproduction of oxygen reactive species and toxic catabolites. Stress induced by these molecules leads cells to death. Thus, for the second part of this thesis, experiments have been performed in order to investigate functional alterations caused by the (+)-pentazocine-mediated increase of DA uptake; particularly it has been investigated if the increase of intracellular [DA] could affect cells viability. Results obtained from this study demonstrate that (+)-pentazocine alone increases DA cell toxicity in a concentration-dependent manner only in cells co-expressing hσ1 and hDAT and σ1 antagonists are able to revert the (+)-pentazocine-induced increase of cell susceptibility to DA toxicity. In the last part of this thesis, the functional cross-talking between hσ1 receptor and hDAT has been further investigated using confocal microscopy. From the acquired data it could be suggested that, following exposure to (+)-pentazocine, the hσ1 receptors massively translocate towards the plasma membrane and colocalize with the hDATs. However, any physical interaction between the two proteins remains to be proved. In conclusion, the presented study shows for the first time that, in cell models, hσ1 receptors directly modulate the hDAT activity. Facilitation of DA uptake induced by (+)-pentazocine is reflected on the increased cell susceptibility to DA toxicity; these effects are prevented by σ1 selective antagonists. Since numerous compounds, including several drugs of abuse, bind to σ1 receptors and activating them could facilitate the damage of dopaminergic neurons, the reported protective effect showed by σ1 antagonists would represent the pharmacological basis to test these compounds in experimental models of dopaminergic neurodegenerative diseases (i.e. Parkinson’s Disease).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is concerned with the development of novel cocaine-derived dopamine transporter ligands for the non-invasive exploration of the striatal and extra-striatal dopamine transporter (DAT) in living systems. The presynaptic dopamine transporter acquires an important function within the mediation of dopaminergic signal transduction. Its availability can serve as a measure for the overall integrity of the dopaminergic system. The DAT is upregulated in early Parkinson’s disease (PD), resulting in an increased availability of DAT-binding sites in the striatal DAT domains. Thereby, DAT imaging has become an important routine diagnostic tool for the early diagnosis of PD in patients, as well as for the differentiation of PD from symptomatically similar medical conditions. Furthermore, the dopaminergic system is involved in a variety of psychiatric diseases. In this regard, DAT-selective imaging agents may provide detailed insights into the scientific understanding of the biochemical background of both, the progress as well as the origins of the symptoms. DAT-imaging may also contribute to the determination of the dopaminergic therapeutic response for a given medication and thereby contribute to more convenient conditions for the patient. From an imaging point of view, the former demands a high availability of the radioactive probe to facilitate broad application of the modality, whereas the latter profits from short-lived probes, suitable for multi-injection studies. Therefore, labelling with longer-lived 18F-fluoride and in particular the generator nuclide 68Ga is worthwhile for clinical routine imaging. In contrast, the introduction of a 11C-label is a prerequisite for detailed scientific studies of neuronal interactions. The development of suitable DAT-ligands for medical imaging has often been complicated by the mixed binding profile of many compounds that that interact with the DAT. Other drawbacks have included high non-specific binding, extensive metabolism and slow accumulation in the DAT-rich brain areas. However, some recent examples have partially overcome the mentioned complications. Based on the structural speciality of these leads, novel ligand structures were designed and successfully synthesised in the present work. A structure activity relationship (SAR) study was conducted wherein the new structural modifications were examined for their influence on DAT-affinity and selectivity. Two of the compounds showed improvements in in vitro affinity for the DAT as well as selectivity versus the serotonin transporter (SERT) and norepinephrine transporter (NET). The main effort was focussed on the high-affinity candidate PR04.MZ, which was subsequently labelled with 18F and 11C in high yield. An initial pharmacological characterisation of PR04.MZ in rodents revealed highly specific binding to the target brain structures. As a result of low non-specific binding, the DAT-rich striatal area was clearly visualised by autoradiography and µPET. Furthermore, the radioactivity uptake into the DAT-rich brain regions was rapid and indicated fast binding equilibrium. No radioactive metabolite was found in the rat brain. [18F]PR04.MZ and [11C]PR04.MZ were compared in the primate brain and the plasma metabolism was studied. It was found that the ligands specifically visualise the DAT in high and low density in the primate brain. The activity uptake was rapid and quantitative evaluation by Logan graphical analysis and simplified reference tissue model was possible after a scanning time of 30 min. These results further reflect the good characteristics of PR04.MZ as a selective ligand of the neuronal DAT. To pursue 68Ga-labelling of the DAT, initial synthetic studies were performed as part of the present thesis. Thereby, a concept for the convenient preparation of novel bifunctional chelators (BFCs) was developed. Furthermore, the suitability of novel 1,4,7-triazacyclononane based N3S3-type BFCs for biomolecule-chelator conjugates of sufficient lipophilicity for the penetration of the blood-brain-barrier was elucidated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined 89 normal volunteers using Cloninger's Temperament and Character Inventory (TCI). Genotyping the 102T/C polymorphism of the serotonin 5HT2A receptor gene and the ser9gly polymorphism in exon 1 of the dopamine D3 receptor (DRD3) gene was performed using PCR-RFLP, whereas the dopamine transporter (DAT1) gene variable number of tandem repeats (VNTR) polymorphism was investigated using PCR amplification followed by electrophoresis in an 8% acrylamide gel with a set of size markers. We found a nominally significant association between gender and harm avoidance (P=0.017; women showing higher scores). There was no association of either DAT1, DRD3 or 5HT2A alleles or genotypes with any dimension of the TCI applying Kruskal-Wallis rank-sum tests. Comparing homozygote and heterozygote DAT1 genotypes, we found higher novelty seeking scores in homozygotes (P=0.054). We further found a nominally significant interaction between DAT1 and 5HT2A homo-/heterozygous gene variants (P=0.0071; DAT1 and 5HT2A genotypes P value of 0.05), performing multivariate analysis of variance (MANOVA). Examining the temperamental TCI subscales, this interaction was associated with persistence (genotypes: P=0.004; homo-/heterozygous gene variants: P=0.0004). We conclude that an interaction between DAT1 and 5HT2A genes might influence the temperamental personality trait persistence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uptake through the dopamine transporter (DAT) represents the primary mechanism used to terminate dopaminergic transmission in brain. Although it is well known that dopamine (DA) taken up by the transporter is used to replenish synaptic vesicle stores for subsequent release, the molecular details of this mechanism are not completely understood. Here, we identified the synaptic vesicle protein synaptogyrin-3 as a DAT interacting protein using the split ubiquitin system. This interaction was confirmed through coimmunoprecipitation experiments using heterologous cell lines and mouse brain. DAT and synaptogyrin-3 colocalized at presynaptic terminals from mouse striatum. Using fluorescence resonance energy transfer microscopy, we show that both proteins interact in live neurons. Pull-down assays with GST (glutathione S-transferase) proteins revealed that the cytoplasmic N termini of both DAT and synaptogyrin-3 are sufficient for this interaction. Furthermore, the N terminus of DAT is capable of binding purified synaptic vesicles from brain tissue. Functional assays revealed that synaptogyrin-3 expression correlated with DAT activity in PC12 and MN9D cells, but not in the non-neuronal HEK-293 cells. These changes were not attributed to changes in transporter cell surface levels or to direct effect of the protein-protein interaction. Instead, the synaptogyrin-3 effect on DAT activity was abolished in the presence of the vesicular monoamine transporter-2 (VMAT2) inhibitor reserpine, suggesting a dependence on the vesicular DA storage system. Finally, we provide evidence for a biochemical complex involving DAT, synaptogyrin-3, and VMAT2. Collectively, our data identify a novel interaction between DAT and synaptogyrin-3 and suggest a physical and functional link between DAT and the vesicular DA system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vivo, G protein-coupled receptors (GPCR) for neurotransmitters undergo complex intracellular trafficking that contribute to regulate their abundance at the cell surface. Here, we report a previously undescribed alteration in the subcellular localization of D1 dopamine receptor (D1R) that occurs in vivo in striatal dopaminoceptive neurons in response to chronic and constitutive hyperdopaminergia. Indeed, in mice lacking the dopamine transporter, D1R is in abnormally low abundance at the plasma membrane of cell bodies and dendrites and is largely accumulated in rough endoplasmic reticulum and Golgi apparatus. Decrease of striatal extracellular dopamine concentration with 6-hydroxydopamine (6- OHDA) in heterozygous mice restores delivery of the receptor from the cytoplasm to the plasma membrane in cell bodies. These results demonstrate that, in vivo, in the central nervous system, the storage in cytoplasmic compartments involved in synthesis and the membrane delivery contribute to regulate GPCR availability and abundance at the surface of the neurons under control of the neurotransmitter tone. Such regulation may contribute to modulate receptivity of neurons to their endogenous ligands and related exogenous drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of cocaine to inhibit the dopamine transporter (DAT) appears to be crucial for its reinforcing properties. The potential use of drugs that produce long-lasting inhibition of the DAT as a mean of preventing the "high" and reducing drug-seeking behavior has become a major strategy in medication development. However, neither the relation between the high and DAT inhibition nor the ability to block the high by prior DAT blockade have ever been demonstrated. To evaluate if DAT could prevent the high induced by methylphenidate (MP), a drug which like cocaine inhibits the DAT, we compared the responses in eight non-drug-abusing subjects between the first and the second of two MP doses (0.375 mg/kg, i.v.) given 60 min apart. At 60 min the high from MP has returned to baseline, but 75-80% of the drug remains in brain. Positron-emission tomography and [11C]d-threo-MP were used to estimate DAT occupancies at different times after MP. DAT inhibition by MP did not block or attenuate the high from a second dose of MP given 60 min later, despite a 80% residual transporter occupancy from the first dose. Furthermore some subjects did not perceive a high after single or repeated administration despite significant DAT blockade. These results indicate that DAT occupancy is not sufficient to account for the high, and that for DAT inhibitors to be therapeutically effective, occupancies > 80% may be required.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cocaine and methylphenidate block uptake by neuronal plasma membrane transporters for dopamine, serotonin, and norepinephrine. Cocaine also blocks voltage-gated sodium channels, a property not shared by methylphenidate. Several lines of evidence have suggested that cocaine blockade of the dopamine transporter (DAT), perhaps with additional contributions from serotonin transporter (5-HTT) recognition, was key to its rewarding actions. We now report that knockout mice without DAT and mice without 5-HTT establish cocaine-conditioned place preferences. Each strain displays cocaine-conditioned place preference in this major mouse model for assessing drug reward, while methylphenidate-conditioned place preference is also maintained in DAT knockout mice. These results have substantial implications for understanding cocaine actions and for strategies to produce anticocaine medications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The prefrontal cortex (PFC), located in the anterior region of the frontal lobe, is considered to have several key roles in higher cognitive and executive functions. In general, the PFC can be seen as a coordinator of thought and action allowing subjects to behave in a goal-directed manner. Due to its anatomical connections with a variety of cortical and subcortical structures, several neurotransmitters, including dopamine, are involved in the regulation of PFC activity. In general, the majority of released dopamine is cleared by the dopamine transporter (DAT). In the PFC however, the number of presynaptic DAT is diminished, emphasizing the relative importance of catechol-O-methyltransferase (COMT) in dopamine metabolism. As a result, the role of COMT in the etiology of psychotic disorders is under constant debate. The present study investigated the role of COMT in prefrontal cortical dopamine metabolism by different neurochemical methods in COMT knockout (COMT-KO) mice. Pharmacological tools to inhibit other dopamine clearing mechanisms were also used for a more comprehensive and collective picture. In addition, this study investigated how a lack of the soluble (S-) COMT isoform affects the total COMT activity as well as the pharmacokinetics of orally administered L-dopa using mutant mice expressing only the membrane-bound (MB-) COMT isoform. Also the role of COMT in striatal and accumbal dopamine turnover during Δ9-tetrahydrocannabinol (THC) challenge was studied. We found markedly increased basal dopamine concentrations in the PFC, but not the striatum or nucleus accumbens (NAcc), of mice lacking COMT. Pharmacological inhibition of the noradrenaline transporter (NET) and monoamine oxidase (MAO) elevated prefrontal cortical dopamine levels several-fold, whereas inhibition of DAT did not. The lack of COMT doubled the dopamine raising effects of NET and MAO inhibition. No compensatory expression of either DAT or NET was found in the COMT-KO mice. The lack of S-COMT decreased the total COMT activity by 50-70 % and modified dopamine transmission and the pharmacokinetics of exogenous Ldopa in a sex and tissue specific manner. Finally, we found that subsequent tolcapone and THC increased dopamine levels in the NAcc, but not in the striatum. Conclusively, this study presents neurochemical evidence for the important role of COMT in the PFC and shows that COMT is responsible for about half of prefrontal cortical dopamine metabolism. This study also highlights the previously underestimated proportional role of MB-COMT and supports the clinical evidence of a gene x environment interaction between COMT and cannabis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Knowledge about the functional status of the frontal cortex in infancy is limited. This study investigated the effects of polymorphisms in four dopamine system genes on performance in a task developed to assess such functioning, the Freeze-Frame task, at 9 months of age. Polymorphisms in the catechol-O-methyltransferase (COMT) and the dopamine D4 receptor (DRD4) genes are likely to impact directly on the functioning of the frontal cortex, whereas polymorphisms in the dopamine D2 receptor (DRD2) and dopamine transporter (DAT1) genes might influence frontal cortex functioning indirectly via strong frontostriatal connections. A significant effect of the COMT valine158methionine (Val158Met) polymorphism was found. Infants with the Met/Met genotype were significantly less distractible than infants with the Val/Val genotype in Freeze-Frame trials presenting an engaging central stimulus. In addition, there was an interaction with the DAT1 3′ variable number of tandem repeats polymorphism; the COMT effect was present only in infants who did not have two copies of the DAT1 10-repeat allele. These findings indicate that dopaminergic polymorphisms affect selective aspects of attention as early as infancy and further validate the Freeze-Frame task as a frontal cortex task.