970 resultados para Dominant Wavelength
Resumo:
Shoreline undulations extending into the bathymetric contours with a length scale larger than that of the rhythmic surf zone bars are referred to as shoreline sand waves. Many observed undulations along sandy coasts display a wavelength in the order 1-7 km. Several models that are based on the hypothesis that sand waves emerge from a morphodynamic instability in case of very oblique wave incidence predict this range of wavelengths. Here we investigate the physical reasons for the wavelength selection and the main parametric trends of the wavelength in case of sand waves arising from such instability. It is shown that the existence of a minimum wavelength depends on an interplay between three factors affecting littoral drift: (A) the angle of wave fronts relative to local shoreline, which tends to cause maximum transport at the downdrift flank of the sand wave, (B) the refractive energy spreading which tends to cause maximum transport at the updrift flank and (C) wave focusing (de-focusing) by the capes (bays), which tends to cause maximum transport at the crest or slightly downdrift of it. Processes A and C cause decay of the sand waves while process B causes their growth. For low incidence angles, B is very weak so that a rectilinear shoreline is stable. For large angles and long sand waves, B is dominant and causes the growth of sand waves. For large angles and short sand waves C is dominant and the sand waves decay. Thus, wavelength selection depends on process C, which essentially depends on shoreline curvature. The growth rate of very long sand waves is weak because the alongshore gradients in sediment transport decrease with the wavelength. This is why there is an optimum or dominant wavelength. It is found that sand wave wavelength scales with λ0/β where λ0 is the water wave wavelength in deep water and β is the mean bed slope from shore to the wave base.
Resumo:
We derive analytical solutions for the three-dimensional time-dependent buckling of a non-Newtonian viscous plate in a less viscous medium. For the plate we assume a power-law rheology. The principal, axes of the stretching D-ij in the homogeneously deformed ground state are parallel and orthogonal to the bounding surfaces of the plate in the flat state. In the model formulation the action of the less viscous medium is replaced by equivalent reaction forces. The reaction forces are assumed to be parallel to the normal vector of the deformed plate surfaces. As a consequence, the buckling process is driven by the differences between the in-plane stresses and out of plane stress, and not by the in-plane stresses alone as assumed in previous models. The governing differential equation is essentially an orthotropic plate equation for rate dependent material, under biaxial pre-stress, supported by a viscous medium. The differential problem is solved by means of Fourier transformation and largest growth coefficients and corresponding wavenumbers are evaluated. We discuss in detail fold evolutions for isotropic in-plane stretching (D-11 = D-22), uniaxial plane straining (D-22 = 0) and in-plane flattening (D-11 = -2D(22)). Three-dimensional plots illustrate the stages of fold evolution for random initial perturbations or initial embryonic folds with axes non-parallel to the maximum compression axis. For all situations, one dominant set of folds develops normal to D-11, although the dominant wavelength differs from the Biot dominant wavelength except when the plate has a purely Newtonian viscosity. However, in the direction parallel to D-22, there exist infinitely many modes in the vicinity of the dominant wavelength which grow only marginally slower than the one corresponding to the dominant wavelength. This means that, except for very special initial conditions, the appearance of a three-dimensional fold will always be governed by at least two wavelengths. The wavelength in the direction parallel to D-11 is the dominant wavelength, and the wavelength(s) in the direction parallel to D-22 is determined essentially by the statistics of the initial state. A comparable sensitivity to the initial geometry does not exist in the classic two-dimensional folding models. In conformity with tradition we have applied Kirchhoff's hypothesis to constrain the cross-sectional rotations of the plate. We investigate the validity of this hypothesis within the framework of Reissner's plate theory. We also include a discussion of the effects of adding elasticity into the constitutive relations and show that there exist critical ratios of the relaxation times of the plate and the embedding medium for which two dominant wavelengths develop, one at ca. 2.5 of the classical Biot dominant wavelength and the other at ca. 0.45 of this wavelength. We propose that herein lies the origin of parasitic folds well known in natural examples.
Resumo:
High-resolution tomographic imaging of the shallow subsurface is becoming increasingly important for a wide range of environmental, hydrological and engineering applications. Because of their superior resolution power, their sensitivity to pertinent petrophysical parameters, and their far reaching complementarities, both seismic and georadar crosshole imaging are of particular importance. To date, corresponding approaches have largely relied on asymptotic, ray-based approaches, which only account for a very small part of the observed wavefields, inherently suffer from a limited resolution, and in complex environments may prove to be inadequate. These problems can potentially be alleviated through waveform inversion. We have developed an acoustic waveform inversion approach for crosshole seismic data whose kernel is based on a finite-difference time-domain (FDTD) solution of the 2-D acoustic wave equations. This algorithm is tested on and applied to synthetic data from seismic velocity models of increasing complexity and realism and the results are compared to those obtained using state-of-the-art ray-based traveltime tomography. Regardless of the heterogeneity of the underlying models, the waveform inversion approach has the potential of reliably resolving both the geometry and the acoustic properties of features of the size of less than half a dominant wavelength. Our results do, however, also indicate that, within their inherent resolution limits, ray-based approaches provide an effective and efficient means to obtain satisfactory tomographic reconstructions of the seismic velocity structure in the presence of mild to moderate heterogeneity and in absence of strong scattering. Conversely, the excess effort of waveform inversion provides the greatest benefits for the most heterogeneous, and arguably most realistic, environments where multiple scattering effects tend to be prevalent and ray-based methods lose most of their effectiveness.
Resumo:
We make an experimental characterization of the effect that static disorder has on the shape of a normal Saffman-Taylor finger. We find that static noise induces a small amplitude and long wavelength instability on the sides of the finger. Fluctuations on the finger sides have a dominant wavelength, indicating that the system acts as a selective amplifier of static noise. The dominant wavelength does not seem to be very sensitive to the intensity of static noise present in the system. On the other hand, at a given flow rate, rms fluctuations of the finger width, decrease with decreasing intensity of static noise. This might explain why the sides of the fingers are flat for typical Saffman-Taylor experiments. Comparison with previous numerical studies of the effect that temporal noise has on the Saffman-Taylor finger, leads to conclude that the effect of temporal noise and static noise are similar. The behavior of fluctuations of the finger width found in our experiments, is qualitatively similar to one recently reported, in the sense that, the magnitude of the width fluctuations decays as a power law of the capillary number, at low flow rates, and increases with capillary number for larger flow rates.
Resumo:
Rare earth (RE) ions have spectroscopic characteristics to emit light in narrow lines, which makes RE complexes with organic ligands candidates for full color OLED (Organic Light Emitting Diode) applications. In particular, beta-diketone rare earth (RE(3+)) complexes show high fluorescence emission efficiency due to the high absorption coefficient of the beta-diketone and energy transfer to the central ion. In this work, the fabrication and the electroluminescent properties of devices containing a double and triple-layer OLED using a new beta-diketone complex, [Eu(bmdm)(3)(tppo)(2)], as transporting and emitting layers are compared and discussed. The double and triple-layer devices based on this complex present the following configurations respectively: device 1: ITO/TPD (40 nm)/[Eu(bmdm)(3)(tppo)(2)] (40 nm)/Al (150 nm); device 2: ITO/TPD (40 nm)/[Eu(bmdm)(3) (tppo)(2)] (40 nm)/Alq(3) (20 nm)/Al (150 nm) and device 3: ITO/TPD (40 nm)/bmdm-ligand (40 nm)/Al (150 nm), were TPD is (N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenil-4,4-diamine) and bmdm is butyl methoxy-dibenzoyl-methane. All the films were deposited by thermal evaporation carried out in a high vacuum system. These devices exhibit high intensity photo- (PL) and electro-luminescent (EL) emission. Electroluminescence spectra show emission from Eu(3+) ions attributed to the (5)D(0) to (7)F(J) (J = 0, 1, 2, 3 and 4) transitions with the hypersensitive (5)D(o) -> (7)F(2) transition (around 612 nm) as the most prominent one. Moreover, a transition from (5)D(1) to (7)F(1) is also observed around 538 nm. The OLED light emission was almost linear with the current density. The EL CIE chromaticity coordinates (X = 0.66 and Y = 0.33) show the dominant wavelength, lambda(d) = 609 nm, and the color gamut achieved by this device is 0.99 in the CIE color space. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work a new europium (III) complex with the following formula NH(4) [Eu(bmdm)(4)] was synthesized and characterized. The bmdm (butyl methoxy-dibenzoyl-methane) is a P-diketone molecule used as UV radiation absorber in sunscreen formulations. Coordination of this ligand to the Eu(3+) ion was confinned by FT-IR, while the Raman spectrum suggests the presence of NH(4)(+) ions. The photoluminescence spectra present narrow lines arising from f-f intra-configurational transitions (5)D(0-)(7)F(0,1,2,3,4), dominated by the hypersensitive (5)D(0)-(7)F(2) transition. In the spectrum recorded at 77 K, all transitions split into 2J + 1 lines suggesting that there is just one symmetry site around Eu(3+) ion. This symmetry is not centrosymmetric. The calculated intensity parameters are ohm(2) = 30.5 x 10(-20) cm(2) and ohm(4) = 5.91 x 10(-20) cm(2) for this complex. The CIE chromaticity coordinates (x = 0.67 and y = 0.32) show a dominant wavelength of 615 nm. The color gamut achieved by this complex is a 100% in the CIE color space. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
It has been shown that the vertical structure of the Brazil Current (BC)-Intermediate Western Boundary Current (IWBC) System is dominated by the first baroclinic mode at 22 degrees S-23 degrees S. In this work, we employed the Miami Isopycnic Coordinate Ocean Model to investigate whether the rich mesoscale activity of this current system, between 20 degrees S and 28 degrees S, is reproduced by a two-layer approximation of its vertical structure. The model results showed cyclonic and anticyclonic meanders propagating southwestward along the current axis, resembling the dynamical pattern of Rossby waves superposed on a mean flow. Analysis of the upper layer zonal velocity component, using a space-time diagram, revealed a dominant wavelength of about 450 km and phase velocity of about 0.20 ms(-1) southwestward. The results also showed that the eddy-like structures slowly grew in amplitude as they moved downstream. Despite the simplified design of the numerical experiments conducted here, these results compared favorably with observations and seem to indicate that weakly unstable long baroclinic waves are responsible for most of the variability observed in the BC-IWBC system. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
It is well known that crystals of topaz from the Eastern Brazilian Pegmatite Province may turn blue by the irradiation with Co-60 gamma rays followed by heat treatment. Also, it is known that the sensation of color changes with the thickness of these crystals. The dependence of the color, given by 1931 CIE chromaticity coordinates, with the thickness of the crystal was analyzed. The absorbance used in the calculation of these coordinates was given by the sum of Gaussian lines. The parameters of these lines were determined through the decomposition of the optical absorption spectra in the ultraviolet and visible regions. The decomposition revealed several lines, whose assignment was made considering studies in spodumene and beryl crystals and highly accurate quantum mechanical calculations. The transmittance becomes very narrow with increasing thickness, and the CIE chromaticity coordinates converge to the borderline of the CIE Chromaticity Diagram at the wavelength of maximum transmittance. Furthermore, the purity of color increases with increasing thickness, and the dominant wavelength reaches the wavelength of maximum transmittance.
Resumo:
At Site 572, located at 1°N, 114° W (3903 m water depth), we recovered a continuous hydraulic piston cored section of upper Miocene to upper Pleistocene pelagic sediments. The sediment is composed of biogenic carbonate and silica with nonbiogenic material as a minor component. Detailed analysis of the calcium carbonate content shows that the degree of variability in carbonate deposition apparently changed markedly between the late Miocene and Pliocene at this equatorial Pacific site. During this interval carbonate mass accumulation rates decreased from 2.6 to 0.8 g/cm**2 per 10**3 yr. If we assume that variations in CaCO3 content reflect changes in the degree of dissolution, then the detailed carbonate analysis would suggest that the degree of variability in carbonate deposition decreases by a factor of 5 as the dominant wavelength of variations increases significantly. However, if the variability in carbonate concentration is described in terms of changes in mean mass accumulation, calculations then suggest that relatively small changes in noncarbonate rates may be important in controlling the observed carbonate records. In addition, the analysis suggests that the degree of variability observed in pelagic carbonate data may in part reflect total accumulation rates. Intervals with high sedimentation rates show lower amplitude variations in concentration than intervals with lower sedimentation rates for the same degree of change in the carbonate accumulation rate.
Resumo:
Unicellular bottom-heavy swimming microorganisms are usually denser than the fluid in which they swim. In shallow suspensions, the bottom heaviness results in a gravitational torque that orients the cells to swim vertically upwards in the absence of fluid flow. Swimming cells thus accumulate at the upper surface to form a concentrated layer of cells. When the cell concentration is high enough, the layer overturns to form bioconvection patterns. Thin concentrated plumes of cells descend rapidly and cells return to the upper surface in wide, slowly moving upwelling plumes. When there is fluid flow, a second viscous torque is exerted on the swimming cells. The balance between the local shear flow viscous and the gravitational torques determines the cells' swimming direction, (gyrotaxis). In this thesis, the wavelengths of bioconvection patterns are studied experimentally as well as theoretically as follow; First, in aquasystem it is rare to find one species lives individually and when they swim they can form complex patterns. Thus, a protocol for controlled experiments to mix two species of swimming algal cells of \emph{C. rienhardtii} and \emph{C. augustae} is systematically described and images of bioconvection patterns are captured. A method for analysing images using wavelets and extracting the local dominant wavelength in spatially varying patterns is developed. The variation of the patterns as a function of the total concentration and the relative concentration between two species is analysed. Second, the linear stability theory of bioconvection for a suspension of two mixed species is studied. The dispersion relationship is computed using Fourier modes in order to calculate the neutral curves as a function of wavenumbers $k$ and $m$. The neutral curves are plotted to compare the instability onset of the suspension of the two mixed species with the instability onset of each species individually. This study could help us to understand which species contributes the most in the process of pattern formation. Finally, predicting the most unstable wavelength was studied previously around a steady state equilibrium situation. Since assuming steady state equilibrium contradicts with reality, the pattern formation in a layer of finite depth of an evolving basic state is studied using the nonnormal modes approach. The nonnormal modes procedure identifies the optimal initial perturbation that can be obtained for a given time $t$ as well as a given set of parameters and wavenumber $k$. Then, we measure the size of the optimal perturbation as it grows with time considering a range of wavenumbers for the same set of parameters to be able to extract the most unstable wavelength.
Resumo:
NR2E3, a photoreceptor-specific nuclear receptor (PNR), represses cone-specific genes and activates several rod-specific genes. In humans, mutations in NR2E3 have been associated with the recessively-inherited enhanced short-wavelength sensitive S-cone syndrome (ESCS) and, recently, with autosomal dominant (ad) retinitis pigmentosa (RP) (adRP). In the present work, we describe two additional families affected by adRP that carry a heterozygous c.166G>A (p.G56R) mutation in the NR2E3 gene. Functional analysis determined the dominant negative activity of the p.G56R mutant protein as the molecular mechanism of adRP. Interestingly, in one pedigree, the most common causal variant for ESCS (p.R311Q) cosegregated with the adRP-linked p.G56R mutation, and the compound heterozygotes exhibited an ESCS-like phenotype, which in 1 of the 2 cases was strikingly "milder" than the patients carrying the p.G56R mutation alone. Impaired repression of cone-specific genes by the corepressors atrophin-1 (dentatorubral-pallidoluysian atrophy [DRPLA] gene product) and atrophin-2 (arginine-glutamic acid dipeptide repeat [RERE] protein) appeared to be a molecular mechanism mediating the beneficial effect of the p.R311Q mutation. Finally, the functional dominance of the p.R311Q variant to the p.G56R mutation is discussed.
Resumo:
We present a computer program developed for estimating penetrance rates in autosomal dominant diseases by means of family kinship and phenotype information contained within the pedigrees. The program also determines the exact 95% credibility interval for the penetrance estimate. Both executable (PenCalc for Windows) and web versions (PenCalcWeb) of the software are available. The web version enables further calculations, such as heterozygosity probabilities and assessment of offspring risks for all individuals in the pedigrees. Both programs can be accessed and down-loaded freely at the home-page address http://www.ib.usp.br/~otto/software.htm.
Resumo:
Context. Cluster properties can be more distinctly studied in pairs of clusters, where we expect the effects of interactions to be strong. Aims. We here discuss the properties of the double cluster Abell 1758 at a redshift z similar to 0.279. These clusters show strong evidence for merging. Methods. We analyse the optical properties of the North and South cluster of Abell 1758 based on deep imaging obtained with the Canada-France-Hawaii Telescope (CFHT) archive Megaprime/Megacam camera in the g' and r' bands, covering a total region of about 1.05 x 1.16 deg(2), or 16.1 x 17.6 Mpc(2). Our X-ray analysis is based on archive XMM-Newton images. Numerical simulations were performed using an N-body algorithm to treat the dark-matter component, a semi-analytical galaxy-formation model for the evolution of the galaxies and a grid-based hydrodynamic code with a parts per million (PPM) scheme for the dynamics of the intra-cluster medium. We computed galaxy luminosity functions (GLFs) and 2D temperature and metallicity maps of the X-ray gas, which we then compared to the results of our numerical simulations. Results. The GLFs of Abell 1758 North are well fit by Schechter functions in the g' and r' bands, but with a small excess of bright galaxies, particularly in the r' band; their faint-end slopes are similar in both bands. In contrast, the GLFs of Abell 1758 South are not well fit by Schechter functions: excesses of bright galaxies are seen in both bands; the faint-end of the GLF is not very well defined in g'. The GLF computed from our numerical simulations assuming a halo mass-luminosity relation agrees with those derived from the observations. From the X-ray analysis, the most striking features are structures in the metal distribution. We found two elongated regions of high metallicity in Abell 1758 North with two peaks towards the centre. In contrast, Abell 1758 South shows a deficit of metals in its central regions. Comparing observational results to those derived from numerical simulations, we could mimic the most prominent features present in the metallicity map and propose an explanation for the dynamical history of the cluster. We found in particular that in the metal-rich elongated regions of the North cluster, winds had been more efficient than ram-pressure stripping in transporting metal-enriched gas to the outskirts. Conclusions. We confirm the merging structure of the North and South clusters, both at optical and X-ray wavelengths.
Resumo:
Background: Cytoadherence of Plasmodium falciparum-infected red blood cells is mediated by var gene-encoded P. falciparum erythrocyte membrane protein-1 and host receptor preference depends in most cases on which of the 50-60 var genes per genome is expressed. Enrichment of phenotypically homogenous parasites by panning on receptor expressing cells is fundamental for the identification of the corresponding var transcript. Methods: P. falciparum 3D7 parasites were panned on several transfected CHO-cell lines and their var transcripts analysed by i) reverse transcription/PCR/cloning/sequencing using a universal DBL alpha specific oligonucleotide pair and ii) by reverse transcription followed by quantitative PCR using 57 different oligonucleotide pairs. Results: Each cytoadherence selected parasite line also adhered to untransfected CHO-745 cells and upregulation of the var gene PFD995/PFD1000c was consistently associated with cytoadherence to all but one CHO cell line. In addition, parasites panned on different CHO cell lines revealed candidate var genes which reproducibly associated to the respective cytoadherent phenotype. The transcription profile obtained by RT-PCR/cloning/sequencing differed significantly from that of RT-quantitative PCR. Conclusion: Transfected CHO cell lines are of limited use for the creation of monophenotypic cytoadherent parasite lines. Nevertheless, 3D7 parasites can be reproducibly selected for the transcription of different determined var genes without genetic manipulation. Most importantly, var transcription analysis by RT-PCR/cloning/sequencing may lead to erroneous interpretation of var transcription profiles.
Resumo:
Context. The Abell 222 and 223 clusters are located at an average redshift z similar to 0.21 and are separated by 0.26 deg. Signatures of mergers have been previously found in these clusters, both in X-rays and at optical wavelengths, thus motivating our study. In X-rays, they are relatively bright, and Abell 223 shows a double structure. A filament has also been detected between the clusters both at optical and X-ray wavelengths. Aims. We analyse the optical properties of these two clusters based on deep imaging in two bands, derive their galaxy luminosity functions (GLFs) and correlate these properties with X-ray characteristics derived from XMM-Newton data. Methods. The optical part of our study is based on archive images obtained with the CFHT Megaprime/Megacam camera, covering a total region of about 1 deg(2), or 12.3 x 12.3 Mpc(2) at a redshift of 0.21. The X-ray analysis is based on archive XMM-Newton images. Results. The GLFs of Abell 222 in the g' and r' bands are well fit by a Schechter function; the GLF is steeper in r' than in g'. For Abell 223, the GLFs in both bands require a second component at bright magnitudes, added to a Schechter function; they are similar in both bands. The Serna & Gerbal method allows to separate well the two clusters. No obvious filamentary structures are detected at very large scales around the clusters, but a third cluster at the same redshift, Abell 209, is located at a projected distance of 19.2 Mpc. X-ray temperature and metallicity maps reveal that the temperature and metallicity of the X-ray gas are quite homogeneous in Abell 222, while they are very perturbed in Abell 223. Conclusions. The Abell 222/Abell 223 system is complex. The two clusters that form this structure present very different dynamical states. Abell 222 is a smaller, less massive and almost isothermal cluster. On the other hand, Abell 223 is more massive and has most probably been crossed by a subcluster on its way to the northeast. As a consequence, the temperature distribution is very inhomogeneous. Signs of recent interactions are also detected in the optical data where this cluster shows a ""perturbed"" GLF. In summary, the multiwavelength analyses of Abell 222 and Abell 223 are used to investigate the connection between the ICM and the cluster galaxy properties in an interacting system.