987 resultados para Domestic wastewater


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bacterial diversity of activated sludge from submerged membrane bioreactor (SMBR) was investigated. A 16S rDNA clone library was generated, and 150 clones were screened using restriction fragment length polymorphism (RFLP). Of the screened clones, almost full-length 16S rDNA sequences of 64 clones were sequenced. Phylogenetic tree was constructed with a database containing clone sequences from this study and bacterial rDNA sequences from NCB1 for identification purposes. The 90.6% of the clones were affiliated with the two phyla Bacteroidetes (50%) and Proteobacteria (40%), and beta-, -gamma-, and delta-Proteobacteria accounted for 7.8%, 28.1%, and 4.7%, respectively. Minor portions were affiliated with the Actinobacteria and Firmicutes (both 3.1%). Only 6 out of 64 16S rDNA sequences exhibited similarities of more than 97% to classified bacterial species, which indicated that a substantial fraction of the clone sequences were derived from unknown taxa. Rarefaction analysis of operational taxonomic units (orrUs) clusters demonstrated that 150 clones screened were still insufficient to describe the whole bacterial diversity. Measurement of water quality parameter demonstrated that performance of the SMBR maintained high level, and the SMBR system remained stable during this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eight kinds of plants were tested in channel-dyke and field irrigation systems. The removal rates of TP, phosphate, TN, ammonia, CODcr and BOD, in the channel-dyke system with napiergrass (Pennisetum purpurem Schumach, x Pennisetum alopecuroides (L.) Spreng American) were 83.2, 82.3, 76.3, 96.2, 73.5 and 85.8%, respectively. The field irrigation systems with rice I-yuanyou No.1(88-132) (Oryza sativa L.) and rice II- suakoko8 (Oryza glaberrima) had high efficiency for N removal; the removal rate were 84.7 and 84.3%, respectively. The mass balance data revealed that napiergrass, rice I and II were the most important nutrient sinks, assimilating more than 50% of TP and TN. Plant uptake of N and P as percentage of total removal from wastewater correlated with biomass yield of and planting mode. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective implementation of the Water Framework Directive requires a reappraisal of conventional approaches to water quality monitoring. Quantifying the impact of domestic wastewater treatment systems (DWWTS) in Irish catchments is further complicated by high levels of natural heterogeneity. This paper presents a numerical model that couples attenuation to flow along different hydrological pathways contributing to river discharge; this permits estimation of the impact of DWWTS to overall nutrient fluxes under a range of geological conditions. Preliminary results suggest high levels of attenuation experienced
before DWWTS effluent reaches bedrock play a significant role in reducing its ecological impact on aquatic receptors. Conversely, low levels of attenuation in systems discharging directly to surface water may affect water quality more significantly, particularly during prolonged dry periods in areas underlain by low productivity aquifers (>60% of Ireland), where dilution capacity is limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three stage-treatment of domestic wastewater including anaerobic, anoxic and aerobic phases is employed in this study while a clarifier unit is replaced with a submerged membrane in the aerobic unit. The effects of operational parameters on the performance of a pilot scale submerged membrane bioreactor (SMBR) namely hydraulic retention time (HRT), ratio of return activated sludge (QRS), ratio of internal recycle (QIR), solid retention time (SRT) and dissolved oxygen (DO) are evaluated by simulations, using a hybrid model composed of TUDP model, oxygen transfer model, biofouling model due to extra-cellular polymeric substances (EPS) and turbulent shear model. The results showed that anaerobic HRT of 3 hours, anoxic HRT of 6 hours, QRS of 20% and QIR of 300 % are satisfactory in obtaining a high removal efficiency (>90%) of COD, NH4-N, P04-P as well as a less sludge production. An increase of sludge production causes an increase in EPS, which fouls the membrane surface and increase the cleaning cycle of membrane. Operation of 5MBR system at 2 mg/I of DO and 30 days of SRT can extend the membrane cleaning cycle dramatically. The membrane cleaning cycle however is strongly dependent on the initial and terminal specific fluxes and displays inverse power relationships to those fluxes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to quantity the effect of filter bed depth and solid waste inputs on the performance of small-scale vermicompost filter beds that treat the soluble contaminants within domestic wastewater. The study also aims to identify environmental conditions within the filters by quantifying the oxygen content and pH of wastewater held within it. Vermicompost is being utilised within commercially available on-site domestic waste treatment systems however, there are few reported studies that have examined this medium for the purpose of wastewater treatment. Three replicate small-scale reactors were designed to enable wastewater sampling at five reactor depths in 10-cm intervals. The surface of each reactor received household solid organic waste and 1301 m(-2) per day of raw domestic wastewater. The solid waste at the filter bed surface leached oxygen demand into the wastewater flowing through it. The oxygen demand was subsequently removed in lower reactor sections. Both nitrification and denitrification occurred in the bed. The extent of denitrification was a function of BOD leached from the solid waste. The environmental conditions measured within the bed were found to be suitable for earthworms living within them. The study identified factors that will affect the performance and application of the vermicompost filtration technology. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study analyses feasibility of using domestic wastewater for fertigation of tree crops. Wastewater samples from different sources in domestic sector were analyzed and evaluated in terms of water quality and quantity. Water is rich in plant nutrients. However, due to possible presence of toxic ions and microbial load, it is recommended that direct use of wastewater for fertigation be limited to timber plantation and energy generation from biomass.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study proposes a wastewater electrolysis cell (WEC) for on-site treatment of human waste coupled with decentralized molecular H2 production. The core of the WEC includes mixed metal oxides anodes functionalized with bismuth doped TiO2 (BiOx/TiO2). The BiOx/TiO2 anode shows reliable electro-catalytic activity to oxidize Cl- to reactive chlorine species (RCS), which degrades environmental pollutants including chemical oxygen demand (COD), protein, NH4+, urea, and total coliforms. The WEC experiments for treatment of various kinds of synthetic and real wastewater demonstrate sufficient water quality of effluent for reuse for toilet flushing and environmental purposes. Cathodic reduction of water and proton on stainless steel cathodes produced molecular H2 with moderate levels of current and energy efficiency. This thesis presents a comprehensive environmental analysis together with kinetic models to provide an in-depth understanding of reaction pathways mediated by the RCS and the effects of key operating parameters. The latter part of this thesis is dedicated to bilayer hetero-junction anodes which show enhanced generation efficiency of RCS and long-term stability.

Chapter 2 describes the reaction pathway and kinetics of urea degradation mediated by electrochemically generated RCS. The urea oxidation involves chloramines and chlorinated urea as reaction intermediates, for which the mass/charge balance analysis reveals that N2 and CO2 are the primary products. Chapter 3 investigates direct-current and photovoltaic powered WEC for domestic wastewater treatment, while Chapter 4 demonstrates the feasibility of the WEC to treat model septic tank effluents. The results in Chapter 2 and 3 corroborate the active roles of chlorine radicals (Cl•/Cl2-•) based on iR-compensated anodic potential (thermodynamic basis) and enhanced pseudo-first-order rate constants (kinetic basis). The effects of operating parameters (anodic potential and [Cl-] in Chapter 3; influent dilution and anaerobic pretreatment in Chapter 4) on the rate and current/energy efficiency of pollutants degradation and H2 production are thoroughly discussed based on robust kinetic models. Chapter 5 reports the generation of RCS on Ir0.7Ta0.3Oy/BixTi1-xOz hetero-junction anodes with enhanced rate, current efficiency, and long-term stability compared to the Ir0.7Ta0.3Oy anode. The effects of surficial Bi concentration are interrogated, focusing on relative distributions between surface-bound hydroxyl radical and higher oxide.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Poorly functioning on-site wastewater treatment systems (OSWTS) can be among the many sources of pollution to groundwater and surface water, which are of critical concern owing to potential human and ecological health risks. An investigation into the effects of on-site wastewater treatment systems (OSWTS) on surface water quality has been undertaken at several sites within a catchment in Co. Monaghan. The study sites were located in areas of 'low’ permeability, suggesting that run-off usually dominates over infiltration. Poor treatment performance of OSWTS within the catchment were found to be the result of several factors, including location in areas with unsuitable soil and site characteristics, incorrect installation, poor maintenance and inappropriate operation by the home owner.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect that plants {Typha latifolia) as well as root-bed medium physical and chemical characteristics have on the treatment of primary treated domestic wastewater within a vertical flow constructed wetland system was investigated. Five sets of cells, with two cells in each set, were used. Each cell was made of concrete and measured 1 .0 m X 1 .0 m and was 1.3 m deep. Four different root-bed media were tested : Queenston Shale, Fonthill Sand, Niagara Shale and a Michigan Sand. Four of the sets contained plants and a single type of root-bed medium. The influence of plants was tested by operating a Queenston Shale set without plants. Due to budget constraints no replicates were constructed. All of the sets were operated independently and identically for twenty-eight months. Twelve months of data are presented here, collected after 16 months of continuous operation. Root-bed medium type did not influence BOD5 removal. All of the sets consistently met Ontario Ministry of Environment (MOE) requirements (<25 mg/L) for BOD5 throughout the year. The 12 month average BOD5 concentration from all sets with plants was below 2.36 mg/L. All of the sets were within MOE discharge requirements (< 25 mg/L) for suspended solids with set effluent concentrations ranging from 1.53 to 14.80 mg/L. The Queenston Shale and Fonthill Sand media removed the most suspended solids while the Niagara Shale set produced suspended solids. The set containing Fonthill Sand was the only series to meet MOE discharge requirements (< Img/L) for total phosphorus year-round with a twelve month mean effluent concentration of 0.23 mg/L. Year-round all of the root-bed media were well below MOE discharge requirements (< 20mg/L in winter and < 10 mg/L in sumnner) for ammonium. The Queenston Shale and Fonthill Sand sets removed the most total nitrogen. Plants had no effect on total nitrogen removal, but did influence how nitrogen was cycled within the system. Plants increased the removal of suspended solids by 14%, BOD5 by 10% and total phosphorus by 22%. Plants also increased the amount of dissolved oxygen that entered the system. During the plant growing season removal of total phosphorus was better in all sets with plants regardless of media type. The sets containing Queenston Shale and Fonthill Sand media achieved the best results and plants in the Queenston Shale set increased treatment efficiency for every parameter except nitrogen. Vertical flow wetland sewage treatment systems can be designed and built to consistently meet MOE discharge requirements year-round for BOD5, suspended solids, total phosphorus and ammonium. This system Is generally superior to the free water systems and sub-surface horizontal flow systems in cold climate situations.