905 resultados para Domestic effluent treatment
Resumo:
Effective implementation of the Water Framework Directive requires a reappraisal of conventional approaches to water quality monitoring. Quantifying the impact of domestic wastewater treatment systems (DWWTS) in Irish catchments is further complicated by high levels of natural heterogeneity. This paper presents a numerical model that couples attenuation to flow along different hydrological pathways contributing to river discharge; this permits estimation of the impact of DWWTS to overall nutrient fluxes under a range of geological conditions. Preliminary results suggest high levels of attenuation experienced
before DWWTS effluent reaches bedrock play a significant role in reducing its ecological impact on aquatic receptors. Conversely, low levels of attenuation in systems discharging directly to surface water may affect water quality more significantly, particularly during prolonged dry periods in areas underlain by low productivity aquifers (>60% of Ireland), where dilution capacity is limited.
Resumo:
This study reports on the use of naturally occurring F-specific coliphages, as well as spiked MS-2 phage, to evaluate a land-based effluent treatment/reuse system and an effluent irrigation scheme. Both the natural phages and the spiked MS-2 phage indicated that the effluent treatment/reuse system (FILTER - Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) achieved a reduction in phage levels over the treatment system by one to two log10. FILTER reduced natural F-specific phage numbers from around 103 to below 102 100-ml-1 and the spiked phage from 105 to around 104 100-ml-1 (incoming compared with outgoing water). In the effluent irrigation scheme, phage spiked into the holding ponds dropped from 106 to 102 100-ml-1 after 168 h (with no detectable levels of natural F-specific phage being found prior to spiking). Only low levels of the spiked phage (102 gm-1) could be recovered from soil irrigated with phage-spiked effluent (at 106 phage 100 ml-1) or from fruits (around 102 phage per fruit) that had direct contact with soil which had been freshly irrigated with the same phage-spiked effluent.
Resumo:
Secondary crops provide a means of assimilating some effluent nitrogen from eutrophic shrimp farm settlement ponds. However, a more important role may be their stimulation of beneficial bacterial nitrogen removal processes. In this study, bacterial biomass, growth and nitrogen removal capacity were quantified in shrimp farm effluent treatment systems containing vertical artificial substrates and either the banana shrimp Penaeus merguiensis (de Man) or the grey mullet, Mugil cephalus L. Banana shrimp were found to actively graze biofilm on the artificial substrates and significantly reduced bacterial biomass relative to a control (24.5 ± 5.6mgCm−2 and 39.2 ± 8.7mgCm−2, respectively). Bacterial volumetric growth rates, however, were significantly increased in the presence of the shrimp relative to the control 45.2±11.3mgCm−2 per day and 22.0±4.3mgCm−2 per day, respectively). Specific growth rate, or growth rate per cell, of bacteria was therefore appreciably stimulated by the banana shrimp. Nitrate assimilation was found to be significantly higher on grazed substrate biofilm relative to the control (223±54 mgNm−2 per day and 126±36 mg Nm−2 per day, respectively), suggesting that increased bacterial growth rate does relate to enhanced nitrogen uptake. Regulated banana shrimp feeding activity therefore can increase the rate of newbacterial biomass production and also the capacity for bacterial effluent nitrogen assimilation. Mullet had a negligible influence on the biofilm associated with the artificial substrate but reduced sediment bacterial biomass (224 ± 92 mgCm−2) relative to undisturbed sediment (650 ± 254 mgCm−2). Net, or volumetric bacterial growth in the sediment was similar in treatments with and without mullet, suggesting that the growth rate per cell of bacteria in grazed sediments was enhanced. Similar rates of dissolved nitrogen mineralisation werefound in sediments with and without mullet but nitrificationwas reduced. Presence of mullet increased water column suspended solids concentrations, water column bacterial growth and dissolved nutrient uptake. This study has shown that secondary crops, particularly banana shrimp, can play a stimulatory role in the bacterial processing of effluent nitrogen in eutrophic shrimp effluent treatment systems.
Resumo:
Eight kinds of plants were tested in channel-dyke and field irrigation systems. The removal rates of TP, phosphate, TN, ammonia, CODcr and BOD, in the channel-dyke system with napiergrass (Pennisetum purpurem Schumach, x Pennisetum alopecuroides (L.) Spreng American) were 83.2, 82.3, 76.3, 96.2, 73.5 and 85.8%, respectively. The field irrigation systems with rice I-yuanyou No.1(88-132) (Oryza sativa L.) and rice II- suakoko8 (Oryza glaberrima) had high efficiency for N removal; the removal rate were 84.7 and 84.3%, respectively. The mass balance data revealed that napiergrass, rice I and II were the most important nutrient sinks, assimilating more than 50% of TP and TN. Plant uptake of N and P as percentage of total removal from wastewater correlated with biomass yield of and planting mode. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
New environmentally acceptable production methods are required to help reduce the environmental impact of many industrial processes. One potential route is the application of photocatalysis using semiconductors. This technique has enabled new environmentally acceptable synthetic routes for organic synthesis which do not require the use of toxic metals as redox reagents. These photocatalysts also have more favourable redox potentials than many traditional reagents. Semiconductor photocatalysis can also be applied to the treatment of polluted effluent or for the destruction of undesirable by-products of reactions. In addition to the clean nature of the process the power requirements of the technique can be relatively low, with some reactions requiring only sunlight.
Resumo:
The microalgae gained importance as food and feed as well as source of fine chemicals since the l960’s. Spirulina became the trend setter due to its easily culturable properties as well as nutritional composition. A rapid expansion of microalgal industry occurred in the Asia-Pacific region as microalgae came to stay as a health food supplement. Microalgae have been an integral component of oxidation ponds usually incorporated with wastewater treatment. Over the last few decades, efforts have been made to apply intensive microalgal cultures to perform biological tertiary treatment of secondary effluents. Given the limited number of species still available for commercial exploitation, it is imperative to isolate and cultivate those photosynthetic organisms with high growth rate and biomass accumulation, which could play the dual role of cleaning the wastewater and also providing useful biomass. This has been the objective of this study ie. 0 To develop pure cultures of local isolates of Cyanobacteria for extraction of biochemicals of commercial value 0 To couple biomass production with effluent treatment
Resumo:
The present research is based on two broader aspects of pollution assessment ,and treatability of petroleum and petrochemical effluents by algae. The objectives of the investigation are to study the algal ecology and trophic status of an oil refinery effluent holding pond , isolate and identify pure cultures of algae, study the role of algae in petroleum and petrochemical effluent treatment, develop strains of algae tolerant to toxic effluents, study the biotreatment potential of the tolerant algal strains developed The thesis comprises of six chapters. The first chapter gives the significance and objectives of the present study. The second chapter describes the methodology, and results of studies on the algal ecology, and trophic status of the effluent holding pond of Cochin Refineries Ltd., Ambalamugal, Kochi. The third chapter deals with the isolation, and development of pure cultures of algae, the algal bioassay of the refinery effluent, and the analyses of Chitrapuzha river water. The analysis, and assessment of the algal growth potential of the petrochemical effluent of Hindustan Organic Chemicals Ltd., Ambalamugal, Kochi. are summarised in the fourth chapter The fifth chapter deals with the algal growth potential in phenol and phenolic effluent, and subsequent absorption of phenol and total dissolved solids. The summary and conclusion of the present study are given in the sixth chapter.
Resumo:
Marine fungus BTMFW032, isolated from seawater and identified as Aspergillus awamori, was observed to produce an extracellular lipase, which could reduce 92% fat and oil content in the effluent laden with oil. In this study, medium for lipase production under submerged fermentation was optimized statistically employing response surface method toward maximal enzyme production. Medium with soyabean meal- 0.77% (w/v); (NH4)2SO4-0.1 M; KH2PO4-0.05 M; rice bran oil-2% (v/v); CaCl2-0.05 M; PEG 6000-0.05% (w/v); NaCl-1% (w/v); inoculum-1% (v/v); pH 3.0; incubation temperature 35 8C and incubation period-five days were identified as optimal conditions for maximal lipase production. The time course experiment under optimized condition, after statistical modeling, indicated that enzyme production commenced after 36 hours of incubation and reached a maximum after 96 hours (495.0 U/ml), whereas maximal specific activity of enzyme was recorded at 108 hours (1164.63 U/mg protein). After optimization an overall 4.6- fold increase in lipase production was achieved. Partial purification by (NH4)2SO4 precipitation and ion exchange chromatography resulted in 33.7% final yield. The lipase was noted to have a molecular mass of 90 kDa and optimal activity at pH 7 and 40 8C. Results indicated the scope for potential application of this marine fungal lipase in bioremediation.
Resumo:
This communication proposes the use of neural networks in the prediction of residual concentrations of hydrogen peroxide from the treatment of effluents through Advanced Oxidative Processes (AOP's), in particular, the photo-Fenton process. To verify the efficiency of the oxidative process, the Chemical Oxygen Demand (COD) parameter, the values of which may be modified by the presence of oxidizing agents such as residual hydrogen peroxide, is frequently taken in account. The analysis of the H2O2 interference was performed by spectrophotometry at 450 nm wavelength, via the monitoring of the reaction of ammonia with metavanadate. The results of the hydrogen peroxide residual concentration were modeled via a feedforward neural network, with the correlation coefficients between actual and predicted values above 0.96, indicating good prediction capacity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recent estimates suggest that spousal abuse is, in fact, on the rise in the U.S. military (The Miles Foundation, 2005). As research specific to the impact of posttraumatic stress disorder (PTSD) on U.S. soldiers has grown since the Vietnam War, clinicians and researchers have begun to investigate how combat-related trauma affects veterans in terms of aggression, hostility and social/emotional functioning. The training and stressors experienced by soldiers in the military are unique and affect all aspects of the veteran's functioning. This paper discusses questions related to why combat veterans may be at increased risk to commit spousal abuse (verbal, psychological, and physical), the relationship between PTSD, substance use, and violence, and the advantages to individualizing group domestic violence (DV) treatment programs for combat veterans. Recommendations will be made for a DV treatment program specifically for combat veterans who also suffer from PTSD.