999 resultados para Disulfide reduction


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We used integrin αLβ2 heterodimers containing I domains locked open (active) or closed (inactive) with disulfide bonds to investigate regulatory interactions among domains in integrins. mAbs to the αL I domain and β2 I-like domain inhibit adhesion of wild-type αLβ2 to intercellular adhesion molecule-1. However, with αLβ2 containing a locked open I domain, mAbs to the I domain were subdivided into subsets (i) that did not inhibit, and thus appear to inhibit by favoring the closed conformation, and (ii) that did inhibit, and thus appear to bind to the ligand binding site. Furthermore, αLβ2 containing a locked open I domain was completely resistant to inhibition by mAbs to the β2 I-like domain, but became fully susceptible to inhibition after disulfide reduction with DTT. This finding suggests that the I-like domain indirectly contributes to ligand binding by regulating opening of the I domain in wild-type αLβ2. Conversely, locking the I domain closed partially restrained conformational change of the I-like domain by Mn2+, as measured with mAb m24, which we map here to the β2 I-like domain. By contrast, locking the I domain closed or open did not affect constitutive or Mn2+-induced exposure of the KIM127 epitope in the β2 stalk region. Furthermore, locked open I domains, in αLβ2 complexes or expressed in isolation on the cell surface, bound to intercellular adhesion molecule-1 equivalently in Mg2+ and Mn2+. These results suggest that Mn2+ activates αLβ2 by binding to a site other than the I domain, most likely the I-like domain of β2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The integrin αLβ2 has three different domains in its headpiece that have been suggested to either bind ligand or to regulate ligand binding. One of these, the inserted or I domain, has a fold similar to that of small G proteins. The I domain of the αM and α2 subunits has been crystallized in both open and closed conformations; however, the αL I domain has been crystallized in only the closed conformation. We hypothesized that the αL domain also would have an open conformation, and that this would be the ligand binding conformation. Therefore, we introduced pairs of cysteine residues to form disulfides that would lock the αL I domain in either the open or closed conformation. Locking the I domain open resulted in a 9,000-fold increase in affinity to intercellular adhesion molecule-1 (ICAM-1), which was reversed by disulfide reduction. By contrast, the affinity of the locked closed conformer was similar to wild type. Binding completely depended on Mg2+. Orders of affinity were ICAM-1 > ICAM-2 > ICAM-3. The kon, koff, and KD values for the locked open I domain were within 1.5-fold of values previously determined for the αLβ2 complex, showing that the I domain is sufficient for full affinity binding to ICAM-1. The locked open I domain antagonized αLβ2-dependent adhesion in vitro, lymphocyte homing in vivo, and firm adhesion but not rolling on high endothelial venules. The ability to reversibly lock a protein fold in an active conformation with dramatically increased affinity opens vistas in therapeutics and proteomics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Kinetic data on inhibition of protein synthesis in thymocyte by three abrins and ricin have been obtained. The intrinsic efficiencies of A chains of four toxins to inactivate ribosomes, as analyzed by k1-versus-concentration plots were abrin II, III > ricin > abrin I. The lag times were 90, 66, 75 and 105 min at a 0.0744 nM concentration of each of abrin I, II, III and ricin, respectively. To account for the observed differences in the dose-dependent lag time, functional and structural variables of toxins such as binding efficiency of B chains to receptors and low-pH-induced structural alterations have been analyzed. The association constants obtained by stopped flow studies showed that abrin-I (4.13 × 105 M−1 s−1) association with putative receptor (4-methylumbelliferyl-α-D-galactoside) is nearly two times more often than abrin III (2.6 × 105 M−1 s−1) at 20°C. Equillibrium binding constants of abrin I and II to thymocyte at 37°C were 2.26 × 107 M−1 and 2.8 × 107 M−1 respectively. pH-induced structural alterations as studied by a parallel enhancement in 8-anilino-L-naphthalene sulfonate fluorescence revealed a high degree of qualitative similarity. These results taken with a nearly identical concentration-independent lag time (minimum lag of 41–42 min) indicated that the binding efficiencies and internalization efficiencies of these toxins are the same and that the observed difference in the dose-dependent lag time is causally related to the proposed processing event. The rates of reduction of inter-subunit disulfide bond, an obligatory step in the intoxication process, have been measured and compared under a variety of conditions. Intersubunit disulfide reduction of abrin I is fourfold faster than that of abrin II at pH 7.2. The rate of disulfide reduction in abrin I could be decreased 1 I-fold by adding lactose, compared to that without lactose. The observed differences in the efficiencies of A chains, the dose-dependent lag period, the modulating effect of lactose on the rates of disulfide reduction and similarity in binding properties make the variants a valuable tool to probe the processing events in toxin transport in detail.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The unfolding of the chicken egg white riboflavin carrier protein by disulfide reduction with dithiothreitol led to aggregation with concomitant loss of ligand binding characteristics and the capacity to interact with six monoclonal antibodies directed against surface-exposed discontinuous epitopes. The reduced protein could, however, bind to a monoclonal antibody recognizing sequential epitope. Under optimal conditions of protein refolding, the vitamin carrier protein regained its folded structure with high efficiency with simultaneous complete restoration of hydrophobic flavin binding site as well as the epitopic conformations exposed at the surface in a manner comparable to its native form.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Between-strand disulfides (BSDs) connect cysteine (Cys) residues across adjacent strands of β-sheets. There are four BSD types which can be found in regular β-structure: CSDs, which link residues immediately opposite each other in the β-structure (residues i and j); ETDs, which connect Cys out of register by one residue (i and j ± 1); BDDs, which join Cys at positions i and j ± 2; and BFDs, which link residues i and j ± 3. Formation of these disulfides was initially predicted to be forbidden, producing too much local strain in the protein fold. However, BSDs do exist in nature. Significantly, their high levels of strain allow them to be involved in redox processes under physiological conditions. Here we characterise BSD motifs found in the Protein Data Bank (PDB), discussing important intrinsic factors, such as the disulfide conformation and torsional strain, and extrinsic factors, such as the influence of the β-sheet environment on the disulfide and vice versa. We also discuss the biological importance of BSDs, including the prevalence of non-homologous examples in the PDB, the conservation of BSD motifs amongst related proteins (BSD clusters) and experimental evidence for BSD redox activity. For clusters of homologous BSDs we present detailed data of the disulfide properties and the variations of these properties amongst the “redundant” structures. Identification of disulfides with the potential to be involved in biological redox processes via the analysis of these data will provide important insights into the function and mechanism of BSD-containing proteins. Characterisation of thiol-based redox signalling pathways will lead to significant breakthroughs in understanding the molecular basis of oxidative stress and associated pathways, such as ageing and neurodegenerative diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A detailed study of tetrathiomolybdate mediated tandem regio- and stereoselective ring opening of aziridine, disulfide formation, reduction of disulfide bond and Michael reaction in a one-pot operation is reported. This constitutes four reactions that take place in one-pot operation. In the reaction of BnEt3N](4)MoS4 with an aziridine derived from cyclohexene and in the absence of Michael acceptor intermediates sulfonamidodisulfide and sulfonamidothiol were isolated and fully characterized. It has also been shown that it is possible to carry out selective opening of the aziridine ring in the presence of an epoxide. By incorporating a suitable Michael acceptor as part of the substrate, intramolecular 1,4-addition could be performed, to achieve the synthesis of sulfur containing acyclic, cyclic amino acid ester derivatives and thia-bicyclo3.3.1]nonane derivatives in good yields. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conformational changes within the human immunodeficiency virus-1 (HIV-1) surface glycoprotein gp120 result from binding to the lymphocyte surface receptors and trigger gp41-mediated virus/cell membrane fusion. The triggering of fusion requires cleavage of two of the nine disulfide bonds of gp120 by a cell-surface protein disulfide-isomerase (PDI). Soluble glycosaminoglycans such as heparin and heparan sulfate bind gp120 via V3 and, possibly, a CD4-induced domain. They exert anti-HIV activity by interfering with the HIV envelope glycoprotein ( Env)/cell-surface interaction. Env also binds cell-surface glycosaminoglycans. Here, using surface plasmon resonance, we observed an inverse relationship between heparin binding by gp120 and its thiol content. In vitro, and in conditions in which gp120 could bind CD4, heparin and heparan sulfate reduced PDI-mediated gp120 reduction by approximately 80%. Interaction of Env with the surface of lymphocytes treated using sodium chlorate, an inhibitor of glycosaminoglycan synthesis, led to gp120 reduction. We conclude that besides their capacity to block Env/cell interaction, soluble glycosaminoglycans can effect anti-HIV activity via interference with PDI- mediated gp120 reduction. In contrast, their presence at the cell surface is dispensable for Env reduction during the course of interaction with the lymphocyte surface. This work suggests that the reduction of exofacial proteins in various diseases can be inhibited by compounds targeting the substrates ( not by targeting PDI, as is usually done), and that glycosaminoglycans that primarily protect proteins by preserving them from proteolysis also have a role in preventing reduction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The human immunodeficiency virus (HIV) envelope (Env) glycoprotein (gp) 120 is a highly disulfide-bonded molecule that attaches HIV to the lymphocyte surface receptors CD4 and CXCR4. Conformation changes within gp120 result from binding and trigger HIV/cell fusion. Inhibition of lymphocyte surface-associated protein-disulfide isomerase (PDI) blocks HIV/cell fusion, suggesting that redox changes within Env are required. Using a sensitive assay based on a thiol reagent, we show that (i) the thiol content of gp120, either secreted by mammalian cells or bound to a lymphocyte surface enabling CD4 but not CXCR4 binding, was 0.5-1 pmol SH/pmol gp120 (SH/gp120), whereas that of gp120 after its interaction with a surface enabling both CD4 and CXCR4 binding was raised to 4 SH/gp120; (ii) PDI inhibitors prevented this change; and (iii) gp120 displaying 2 SH/gp120 exhibited CD4 but not CXCR4 binding capacity. In addition, PDI inhibition did not impair gp120 binding to receptors. We conclude that on average two of the nine disulfides of gp120 are reduced during interaction with the lymphocyte surface after CXCR4 binding prior to fusion and that cell surface PDI catalyzes this process. Disulfide bond restructuring within Env may constitute the molecular basis of the post-receptor binding conformational changes that induce fusion competence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2-Cys peroxiredoxin (Prx) enzymes are ubiquitously distributed peroxidases that make use of a peroxidatic cysteine (Cys(P)) to decompose hydroperoxides. A disulfide bond is generated as a consequence of the partial unfolding of the alpha-helix that contains Cys(P). Therefore, during its catalytic cycle, 2-Cys Prx alternates between two states, locally unfolded and fully folded. Tsa1 (thiol-specific antioxidant protein 1 from yeast) is by far the most abundant Cys-based peroxidase in Saccharomyces cerevisiae. In this work, we present the crystallographic structure at 2.8 angstrom resolution of Tsa1(C47S) in the decameric form [(alpha(2))(5)] with a DTT molecule bound to the active site, representing one of the few available reports of a 2-Cys Prx (AhpC-Prx1 subfamily) (AhpC, alkyl hydroperoxide reductase subunit C) structure that incorporates a ligand. The analysis of the Tsa1(C47S) structure indicated that G1u50 and Arg146 participate in the stabilization of the Cys(P) alpha-helix. As a consequence, we raised the hypothesis that G1u50 and Arg146 might be relevant to the Cys(P) reactivity. Therefore, Tsa1(E50A) and Tsa1(R146Q) mutants were generated and were still able to decompose hydrogen peroxide, presenting a second-order rate constant in the range of 10(6) M-1 S-1. Remarkably, although Tsa1(E50A) and Tsa1(R146Q) were efficiently reduced by the low-molecular-weight reductant DTT, these mutants displayed only marginal thioredoxin (Trx)-dependent peroxidase activity, indicating that G1u50 and Arg146 are important for the Tsa1-Trx interaction. These results may impact the comprehension of downstream events of signaling pathways that are triggered by the oxidation of critical Cys residues, such as Trx. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the formation of dynamic, reversible cross-linked dendritic megamers and their dissociation to monomeric dendrimers, through a thiol-disulfide interchange reaction. For this study, poly(alkyl aryl ether) dendrimers up to three-generations presenting thiol functionalities, were prepared. The series from zero to three generations of dendrimers were installed with 3, 6, 12, and 24 thiol functionalities at their peripheries. Upon synthesis, cross-linking of the dendrimer was accomplished through disulfide bond formation. The cross-linking of dendrimers was monitored through optical density changes at 420 nm. Dense cross-linking led to visible precipitation of dendritic megamers and the morphologies of the megamers were characterized by transmission electron microscopy. The disulfide cross-links between megamer monomers could be dissociated readily upon reduction of disulfide bond by dithiothreitol reagent. Preliminary studies show that dendritic megamers encapsulate C-60 and the efficiency of encapsulation increased with increasing generation of dendritic megamer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A concentration dependent inhibition of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase was found on preincubation of microsomal preparations with diallyl disulfide, a component of garlic oil. This inhibited state was only partially reversed even with high concentrations of DTT. Glutathione, a naturally occurring reducing thiol agent, was ineffective. The substrate, HMG CoA, but not NADPH, was able to give partial protection for the DTT-dependent, but not glutathione-dependent activity. The garlic-derived diallyl disulfide is the most effective among the sulfides tested for inhibition of HMG CoA reductase. Formation of protein internal disulfides, inaccessible for reduction by thiol agents, but not of protein dimer, is likely to be the cause of this inactivation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment with diallyl disulfide, a constituent of garlic oil, irreversibly inactivated microsomal and a soluble 50 kDa form of HMG-CoA reductase. No radioactivity was found to be protein-bound on treating the soluble enzyme with [35S]diallyl disulfide, indicating the absence of the mixed disulfide of the type allyl-S-S-protein. SDS-PAGE and Western blot analyses of the diallyl-disulfide-treated protein showed no traces of the dimer of the type protein-S-S-protein, but clearly indicated BME-reversible increased mobility, as expected of an intramolecular protein disulfide. The sulfhydryl groups, as measured by alkylation with iodo[2-14C]acetic acid, were found to decrease in the diallyl-disulfide-treated enzyme protein. Tryptic peptide analysis also gave support for the possible presence of disulfide-containing peptides in such a protein. It appears that diallyl disulfide inactivated HMG-CoA reductase by forming an internal protein disulfide that became inaccessible for reduction by DTT, and thereby retaining the inactive state of the enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and high-throughput method for the identification of disulfide-containing peptides utilizing peptide-matrix adducts is described. Some commonly used matrices in MALDI mass spectrometry were found to specifically react with sulfhydryl groups within peptide, thus allowing the observation of the peptide-matrix adduct ion [M + n + n' matrix + H](+) or [M + n + n' matrix + Na](+) (n = the number of cysteine residues, n' = 1, 2, ..., n) in MALDI mass spectra after chemical reduction of disulfide-linked peptides. Among several matrices tested, alpha-cyano-4-hydroxycinnamic acid (CHCA, molecular mass 189 Da) and alpha-cyano-3-hydroxycinnamic acid (3-HCCA) were found to be more effective for MALDI analysis of disulfide-containing peptides/proteins. Two reduced cysteines involved in a disulfide bridge resulted in a mass shift of 189 Da per cysteine, so the number of disulfide bonds could then be determined, while for the other matrices (sinapinic acid, ferulic acid, and caffeic acid), a similar addition reaction could not occur unless the reaction was carried out under alkaline conditions. The underlying mechanism of the reaction of the matrix addition at sulfhydryl groups is proposed, and several factors that might affect the formation of the peptide-matrix adducts were investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemistry of disulfide in cytochrome c on gold electrodes was reported. The observed electrochemical response was used to explain why the electrochemical reaction of cytochrome c is irreversible at gold electrodes. Disulfide bonds in cytochrome c were strongly adsorbed onto the surface of gold electrodes and caused slow rate of electron transfer of the heme group. It was found that the presence of disulfides in cytochrome c was responsible for the lack of electrochemical response of the heme group on a gold electrode. The mechanisms for this effect were studied using electrochemistry and photoelectron spectroscopy. (C) 1999 Elsevier Science B.V. All rights reserved.