987 resultados para Distribution lines
Resumo:
Many of the power utilities around the world experienced spurious tripping of directional earth fault relays in their mesh distribution networks due to induced circulating currents. This circulating current is zero sequence and induced in the healthy circuit due to the zero sequence current flow resulting from a ground fault of a parallel circuit. This paper quantitatively discusses the effects of mutual coupling on earth fault protection of distribution systems. An actual spurious tripping event is analyzed to support the theory and to present options for improved resilience to spurious tripping.
Resumo:
The main objective involved with this paper consists of presenting the results obtained from the application of artificial neural networks and statistical tools in the automatic identification and classification process of faults in electric power distribution systems. The developed techniques to treat the proposed problem have used, in an integrated way, several approaches that can contribute to the successful detection process of faults, aiming that it is carried out in a reliable and safe way. The compilations of the results obtained from practical experiments accomplished in a pilot distribution feeder have demonstrated that the developed techniques provide accurate results, identifying and classifying efficiently the several occurrences of faults observed in the feeder. © 2006 IEEE.
Resumo:
Determination of the placement and rating of transformers and feeders are the main objective of the basic distribution network planning. The bus voltage and the feeder current are two constraints which should be maintained within their standard range. The distribution network planning is hardened when the planning area is located far from the sources of power generation and the infrastructure. This is mainly as a consequence of the voltage drop, line loss and system reliability. Long distance to supply loads causes a significant amount of voltage drop across the distribution lines. Capacitors and Voltage Regulators (VRs) can be installed to decrease the voltage drop. This long distance also increases the probability of occurrence of a failure. This high probability leads the network reliability to be low. Cross-Connections (CC) and Distributed Generators (DGs) are devices which can be employed for improving system reliability. Another main factor which should be considered in planning of distribution networks (in both rural and urban areas) is load growth. For supporting this factor, transformers and feeders are conventionally upgraded which applies a large cost. Installation of DGs and capacitors in a distribution network can alleviate this issue while the other benefits are gained. In this research, a comprehensive planning is presented for the distribution networks. Since the distribution network is composed of low and medium voltage networks, both are included in this procedure. However, the main focus of this research is on the medium voltage network planning. The main objective is to minimize the investment cost, the line loss, and the reliability indices for a study timeframe and to support load growth. The investment cost is related to the distribution network elements such as the transformers, feeders, capacitors, VRs, CCs, and DGs. The voltage drop and the feeder current as the constraints are maintained within their standard range. In addition to minimizing the reliability and line loss costs, the planned network should support a continual growth of loads, which is an essential concern in planning distribution networks. In this thesis, a novel segmentation-based strategy is proposed for including this factor. Using this strategy, the computation time is significantly reduced compared with the exhaustive search method as the accuracy is still acceptable. In addition to being applicable for considering the load growth, this strategy is appropriate for inclusion of practical load characteristic (dynamic), as demonstrated in this thesis. The allocation and sizing problem has a discrete nature with several local minima. This highlights the importance of selecting a proper optimization method. Modified discrete particle swarm optimization as a heuristic method is introduced in this research to solve this complex planning problem. Discrete nonlinear programming and genetic algorithm as an analytical and a heuristic method respectively are also applied to this problem to evaluate the proposed optimization method.
Resumo:
Air distribution systems are one of the major electrical energy consumers in air-conditioned commercial buildings which maintain comfortable indoor thermal environment and air quality by supplying specified amounts of treated air into different zones. The sizes of air distribution lines affect energy efficiency of the distribution systems. Equal friction and static regain are two well-known approaches for sizing the air distribution lines. Concerns to life cycle cost of the air distribution systems, T and IPS methods have been developed. Hitherto, all these methods are based on static design conditions. Therefore, dynamic performance of the system has not been yet addressed; whereas, the air distribution systems are mostly performed in dynamic rather than static conditions. Besides, none of the existing methods consider any aspects of thermal comfort and environmental impacts. This study attempts to investigate the existing methods for sizing of the air distribution systems and proposes a dynamic approach for size optimisation of the air distribution lines by taking into account optimisation criteria such as economic aspects, environmental impacts and technical performance. These criteria have been respectively addressed through whole life costing analysis, life cycle assessment and deviation from set-point temperature of different zones. Integration of these criteria into the TRNSYS software produces a novel dynamic optimisation approach for duct sizing. Due to the integration of different criteria into a well- known performance evaluation software, this approach could be easily adopted by designers in busy nature of design. Comparison of this integrated approach with the existing methods reveals that under the defined criteria, system performance is improved up to 15% compared to the existing methods. This approach is interpreted as a significant step forward reaching to the net zero emission building in future.
Resumo:
The capacitor placement (replacement) problem for radial distribution networks determines capacitor types, sizes, locations and control schemes. Optimal capacitor placement is a hard combinatorial problem that can be formulated as a mixed integer nonlinear program. Since this is a NP complete problem (Non Polynomial time) the solution approach uses a combinatorial search algorithm. The paper proposes a hybrid method drawn upon the Tabu Search approach, extended with features taken from other combinatorial approaches such as genetic algorithms and simulated annealing, and from practical heuristic approaches. The proposed method has been tested in a range of networks available in the literature with superior results regarding both quality and cost of solutions.
Resumo:
The capacitor placement problem for radial distribution networks aims to determine capacitor types, sizes, locations and control scheme. This is a combinatorial problem that can be formulated as a mixed integer nonlinear program. The paper presents an algorithm inspired in artificial immune systems and developed for this specific problem. A good performance was obtained through experimental tests applied to known systems. © 2006 IEEE.
Resumo:
In this paper a three-phase power flow for electrical distribution systems considering different models of voltage regulators is presented. A voltage regulator (VR) is an equipment that maintains the voltage level in a predefined value in a distribution line in spite of the load variations within its nominal power. Three different types of connections are analyzed: 1) wye-connected regulators, 2) open delta-connected regulators and 3) closed delta-connected regulators. To calculate the power flow, the three-phase backward/forward sweep algorithm is used. The methodology is tested on the IEEE 34 bus distribution system. ©2008 IEEE.
Resumo:
The high active and reactive power level demanded by the distribution systems, the growth of consuming centers, and the long lines of the distribution systems result in voltage variations in the busses compromising the quality of energy supplied. To ensure the energy quality supplied in the distribution system short-term planning, some devices and actions are used to implement an effective control of voltage, reactive power, and power factor of the network. Among these devices and actions are the voltage regulators (VRs) and capacitor banks (CBs), as well as exchanging the conductors sizes of distribution lines. This paper presents a methodology based on the Non-Dominated Sorting Genetic Algorithm (NSGA-II) for optimized allocation of VRs, CBs, and exchange of conductors in radial distribution systems. The Multiobjective Genetic Algorithm (MGA) is aided by an inference process developed using fuzzy logic, which applies specialized knowledge to achieve the reduction of the search space for the allocation of CBs and VRs.
Resumo:
Overhead distribution lines are often exposed to lightning overvoltages, whose waveforms vary widely and can differ substantially from the standard impulse voltage waveform (1,2 - 50). Different models have been proposed for predicting the strength of insulation subjected to impulses of non-standard waveforms. One of the most commonly used is the disruptive effect model, for which there are different methods for the estimation of the parameters required for its application. This paper aims at evaluating the dielectric behavior of medium voltage insulators subjected to impulses of non-standard waveforms, as well as at evaluating two methods for predicting their dielectric strength against such impulses. The test results relative to the critical lightning impulse flashover voltage (U50) and the volt-time characteristics obtained for the positive and negative polarities of different voltage waveforms are presented and discussed.
Resumo:
As continued global funding and coordination are allocated toward the improvement of access to safe sources of drinking water, alternative solutions may be necessary to expand implementation to remote communities. This report evaluates two technologies used in a small water distribution system in a mountainous region of Panama; solar powered pumping and flow-reducing discs. The two parts of the system function independently, but were both chosen for their ability to mitigate unique issues in the community. The design program NeatWork and flow-reducing discs were evaluated because they are tools taught to Peace Corps Volunteers in Panama. Even when ample water is available, mountainous terrains affect the pressure available throughout a water distribution system. Since the static head in the system only varies with the height of water in the tank, frictional losses from pipes and fittings must be exploited to balance out the inequalities caused by the uneven terrain. Reducing the maximum allowable flow to connections through the installation of flow-reducing discs can help to retain enough residual pressure in the main distribution lines to provide reliable service to all connections. NeatWork was calibrated to measured flow rates by changing the orifice coefficient (θ), resulting in a value of 0.68, which is 10-15% higher than typical values for manufactured flow-reducing discs. NeatWork was used to model various system configurations to determine if a single-sized flow-reducing disc could provide equitable flow rates throughout an entire system. There is a strong correlation between the optimum single-sized flow- reducing disc and the average elevation change throughout a water distribution system; the larger the elevation change across the system, the smaller the recommended uniform orifice size. Renewable energy can jump the infrastructure gap and provide basic services at a fraction of the cost and time required to install transmission lines. Methods for the assessment of solar powered pumping systems as a means for rural water supply are presented and assessed. It was determined that manufacturer provided product specifications can be used to appropriately design a solar pumping system, but care must be taken to ensure that sufficient water can be provided to the system despite variations in solar intensity.
Resumo:
This paper describes the optimization of conductor size and the voltage regulator location & magnitude of long rural distribution lines. The optimization minimizes the lifetime cost of the lines, including capital costs and losses while observing voltage drop and operational constraints using a Genetic Algorithm (GA). The GA optimization is applied to a real Single Wire Earth Return (SWER) network in regional Queensland and results are presented.
Resumo:
In rural low-voltage networks, distribution lines are usually highly resistive. When many distributed generators are connected to such lines, power sharing among them is difficult when using conventional droop control, as the real and reactive power have strong coupling with each other. A high droop gain can alleviate this problem but may lead the system to instability. To overcome4 this, two droop control methods are proposed for accurate load sharing with frequency droop controller. The first method considers no communication among the distributed generators and regulates the output voltage and frequency, ensuring acceptable load sharing. The droop equations are modified with a transformation matrix based on the line R/X ration for this purpose. The second proposed method, with minimal low bandwidth communication, modifies the reference frequency of the distributed generators based on the active and reactive power flow in the lines connected to the points of common coupling. The performance of these two proposed controllers is compared with that of a controller, which includes an expensive high bandwidth communication system through time-domain simulation of a test system. The magnitude of errors in power sharing between these three droop control schemes are evaluated and tabulated.
Resumo:
In this paper, a comprehensive planning methodology is proposed that can minimize the line loss, maximize the reliability and improve the voltage profile in a distribution network. The injected active and reactive power of Distributed Generators (DG) and the installed capacitor sizes at different buses and for different load levels are optimally controlled. The tap setting of HV/MV transformer along with the line and transformer upgrading is also included in the objective function. A hybrid optimization method, called Hybrid Discrete Particle Swarm Optimization (HDPSO), is introduced to solve this nonlinear and discrete optimization problem. The proposed HDPSO approach is a developed version of DPSO in which the diversity of the optimizing variables is increased using the genetic algorithm operators to avoid trapping in local minima. The objective function is composed of the investment cost of DGs, capacitors, distribution lines and HV/MV transformer, the line loss, and the reliability. All of these elements are converted into genuine dollars. Given this, a single-objective optimization method is sufficient. The bus voltage and the line current as constraints are satisfied during the optimization procedure. The IEEE 18-bus test system is modified and employed to evaluate the proposed algorithm. The results illustrate the unavoidable need for optimal control on the DG active and reactive power and capacitors in distribution networks.
Resumo:
In recent years, electric propulsion systems have increasingly been used in land, sea and air vehicles. The vehicular power systems are usually loaded with tightly regulated power electronic converters which tend to draw constant power. Since the constant power loads (CPLs) impose negative incremental resistance characteristics on the feeder system, they pose a potential threat to the stability of vehicular power systems. This effect becomes more significant in the presence of distribution lines between source and load in large vehicular power systems such as electric ships and more electric aircrafts. System transients such as sudden drop of converter side loads or increase of constant power requirement can cause complete system instability. Most of the existing research work focuses on the modeling and stabilization of DC vehicular power systems with CPLs. Only a few solutions are proposed to stabilize AC vehicular power systems with non-negligible distribution lines and CPLs. Therefore, this paper proposes a novel loop cancellation technique to eliminate constant power instability in AC vehicular power systems with a theoretically unbounded system stability region. Analysis is carried out on system stability with the proposed method and simulation results are presented to validate its effectiveness.