848 resultados para Dissolution efficiency
Resumo:
Sodium diclofenac (SD) release from dosage forms has been studied under different conditions. However, no dissolution method that is discriminatory enough to reflect slight changes in formulation or manufacturing process, and which could be effectively correlated with the biological properties of the dosage form, has been reported. This study sought to develop three different formulae of SD-containing matrix tablets and to determine the effect of agitation speed in its dissolution profiles. F1, F2 and F3 formulations were developed using hypromellose (10, 20 and 30%, respectively for F1, F2 and F3) and other conventional excipients. Dissolution tests were carried out in phosphate buffer pH 6.8 at 37 degrees C using apparatus 11 at 50, 75 or 100 rpm. Dissolution efficiency (DE), T(50) and T(90) were determined and plotted as functions of the variables agitation speed and hypromellose concentration. Regarding DE, F2 showed more sensitivity to variations in agitation speed than F1 and F3. Increasing hypromellose concentration reduced DE values, independent of agitation speed. Analysis of T(50) and T(90) suggests that F1 is less sensitive to variations in agitation speed than F2 and F3. Most discriminatory dissolution conditions were observed at 50 rpm. Results suggest that the comparison of dissolution performance of SD matrix tablets should take into account polymer concentration and agitation conditions. (C) 2009 Published by Elsevier B.V.
Resumo:
Obtention and Evaluation of Inclusion Complexes of Furosemide with beta-ciclodextrin and hidroxipropil-beta-ciclodextrin: Effects on Drug`s Dissolution Properties. The purpose of this study was to prepare, characterize and evaluate the dissolution behavior of inclusion complexes of furosemide with beta-cyclodextrin (beta-CD) and hydroxypropyl-beta-cyclodextrin (HP-beta-CD). Solid complexes of furosemide with P-CD and-HP-beta-CD were prepared by using a freeze-drying method. Physical mixtures were prepared for comparison. The inclusion complexes were characterized by differential scanning calorimetry (DSC), Infrared (IR) and dissolution test. ""In vitro"" dissolutions assays were performed at pH 1,2; pH 4,5 and pH 6,8 media for a 60 min period. Statistical analysis employing ANOVA and Tukey`s Test, for the dissolution efficiency values (ED%), showed that complexation of furosemide with both cyclodextrins improved significantly ED% of the drug in all tested media, suggesting a minor pH influence on dissolution properties of the drug.
Resumo:
Self-nanoemulsifying drug delivery systems of gemfibrozil were developed under Quality by Design approach for improvement of dissolution and oral absorption. Preliminary screening was performed to select proper components combination. BoxBehnken experimental design was employed as statistical tool to optimize the formulation variables, X1 (Cremophor® EL), X2 (Capmul® MCM-C8), and X3 (lemon essential oil). Systems were assessed for visual characteristics (emulsification efficacy), turbidity, droplet size, polydispersity index and drug release. Different pH media were also assayed for optimization. Following optimization, the values of formulation components (X1, X2, and X3) were 32.43%, 29.73% and 21.62%, respectively (16.22% of gemfibrozil). Transmission electron microscopy demonstrated spherical droplet morphology. SNEEDS release study was compared to commercial tablets. Optimized SNEDDS formulation of gemfibrozil showed a significant increase in dissolution rate compared to conventional tablets. Both formulations followed Weibull mathematical model release with a significant difference in td parameter in favor of the SNEDDS. Equally amodelistic parameters were calculated being the dissolution efficiency significantly higher for SNEDDS, confirming that the developed SNEDDS formulation was superior to commercial formulation with respect to in vitro dissolution profile. This paper provides an overview of the SNEDDS of the gemfibrozil as a promising alternative to improve oral absorption.
Resumo:
The aim of this work was the development of a dissolution method for benznidazole (BNZ) tablets. Three different types of dissolution media, two stirring speeds and apparatus 2 (paddle) were used. The accomplishment of the drug dissolution profiles was compared through the dissolution efficiency. The assay was performed by spectrophotometry at 324 nm. The better conditions were: sodium chloride\hydrochloride acid buffer pH 1.2 with stirring speed of 75 rpm, volume of 900 mL and paddle as apparatus. Ahead of the results it can be concluded that the method developed consists in an efficient alternative for assays of dissolution for benznidazole tablets.
Resumo:
A simple, precise, specific, repeatable and discriminating dissolution test for primaquine (PQ) matrix tablets was developed and validated according to ICH and FDA guidelines. Two UV assaying methods were validated for determination of PQ released in 0.1 M hydrochloric acid and water media. Both methods were linear (R²>0.999), precise (R.S.D.<1.87%) and accurate (97.65-99.97%). Dissolution efficiency (69-88%) and equivalence of formulations (f2) was assessed in different media and apparatuses (basket/100 rpm and paddle/50 rpm) tested. Discriminating condition was 900 mL aqueous medium, basket at 100 rpm and sampling times at 1, 4 and 8 h. Repeatability (R.S.D.<2.71%) and intermediate precision (R.S.D.<2.06%) of dissolution method were satisfactory.
Resumo:
In the present study dissolution tests and thermoanalytical (TA) techniques were applied to metronidazole tablets from five laboratories (R, G, SA, SB, SC) available on the Brazilian market. The TA profiles indicated that in some formulations interactions between components led to eutectic products with lower melting points than metronidazole. The formulations SB and SC showed dissolution profiles that did not agree with published standards, confirming the TA results. All dissolution data were mathematically compared with kinetic models of release, demonstrating the main release mechanism was first order in all the tablets. The formulations were statistically compared by ANOVA and post-hoc tests (Tukey and Newman-Keuls), reveling significant differences in dissolution efficiency (DE).
Resumo:
In this study, fluid bed granulation was applied to improve the dissolution of nimodipine and spironolactone, two very poorly water-soluble drugs. Granules were obtained with different amounts of sodium dodecyl sulfate and croscarmellose sodium and then compressed into tablets. The dissolution behavior of the tablets was studied by comparing their dissolution profiles and dissolution efficiency with those obtained from physical mixtures of the drug and excipients subjected to similar conditions. Statistical analysis of the results demonstrated that the fluid bed granulation process improves the dissolution efficiency of both nimodipine and spironolactone tablets. The addition of either the surfactant or the disintegrant employed in the study proved to have a lower impact on this improvement in dissolution than the fluid bed granulation process.
Resumo:
In this study, fluid bed granulation was applied to improve the dissolution of nimodipine and spironolactone, two very poorly water-soluble drugs. Granules were obtained with different amounts of sodium dodecyl sulfate and croscarmellose sodium and then compressed into tablets. The dissolution behavior of the tablets was studied by comparing their dissolution profiles and dissolution efficiency with those obtained from physical mixtures of the drug and excipients subjected to similar conditions. Statistical analysis of the results demonstrated that the fluid bed granulation process improves the dissolution efficiency of both nimodipine and spironolactone tablets. The addition of either the surfactant or the disintegrant employed in the study proved to have a lower impact on this improvement in dissolution than the fluid bed granulation process.
Resumo:
Calcium hydroxide dressing residuals can compromise endodontic sealing. This study evaluated the cleaning efficacy of different endodontic irrigants in removing calcium hydroxide by SEM image analysis. Fifty-four single-rooted mandibular premolars were instrumented to a master apical file #60 and dressed with calcium hydroxide. After 36 hours, the teeth were reopened and Ca(OH)(2) medication was removed by 5 different experimental groups: 0.5% NaOCl (G1), EDTA-C (G2), citric acid (G3), EDTA-T (G4), and re-instrumentation with MAF using NaOCl and lubrificant, followed by EDTA-T (G5). The roots were split in the buccal-lingual direction and prepared for SEM analysis in cervical, middle, and apical thirds (9, 6, and 3 mm from the apex). Five blinded examiners evaluated the wall cleanliness using a scale from 1 to 5. Statistical analysis was performed using Kruskal-Wallis at 5% level of significance. Group G5 had the best results in all thirds, with significant statistical differences compared to all other groups in the middle and coronal third, and to G1 in the apical third. On the other hand, G1, only flushed with NaOCl, had the worst results, with statistical differences in all thirds compared to the other groups. The best cleanliness was achieved by G4 and G5 groups. The recapitulation of MAF in combination with irrigants improved the removal of calcium hydroxide medication better than an irrigant flush alone. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: 580-584)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Water soluble perchlorinated trityl (PTM) radicals were found to be effective 95 GHz DNP (dynamic nuclear polarization) polarizers in ex situ (dissolution) 13C DNP (Gabellieri et al., Angew Chem., Int. Ed. 2010, 49, 3360). The degree of the nuclear polarization obtained was reported to be dependent on the position of the chlorine substituents on the trityl skeleton. In addition, on the basis of the DNP frequency sweeps it was suggested that the 13C NMR signal enhancement is mediated by the Cl nuclei. To understand the DNP mechanism of the PTM radicals we have explored the 95 GHz EPR characteristics of these radicals that are relevant to their performance as DNP polarizers. The EPR spectra of the radicals revealed axially symmetric g-tensors. A comparison of the spectra with the 13C DNP frequency sweeps showed that although the solid effect mechanism is operational the DNP frequency sweeps reveal some extra width suggesting that contributions from EPR forbidden transitions involving 35,37Cl nuclear flips are likely. This was substantiated experimentally by ELDOR (electron-electron double resonance) detected NMR measurements, which map the EPR forbidden transitions, and ELDOR experiments that follow the depolarization of the electron spin upon irradiation of the forbidden EPR transitions. DFT (density functional theory) calculations helped to assign the observed transitions and provided the relevant spin Hamiltonian parameters. These results show that the 35,37Cl hyperfine and nuclear quadrupolar interactions cause a considerable nuclear state mixing at 95 GHz thus facilitating the polarization of the Cl nuclei upon microwave irradiation. Overlap of Cl nuclear frequencies and the 13C Larmor frequency further facilitates the polarization of the 13C nuclei by spin diffusion. Calculation of the 13C DNP frequency sweep based on the Cl nuclear polarization showed that it does lead to an increase in the width of the spectra, improving the agreement with the experimental sweeps, thus supporting the existence of a new heteronuclear assisted DNP mechanism.
Resumo:
The hydrophilic drug sodium alendronate was encapsulated in blended microparticles of Eudragit® S100 and Methocel® F4M or Methocel® K100LV. Both formulations prepared by spray-drying showed spherical collapsed shape and smooth surface, encapsulation efficiencies of 85 and 82% and mean diameters of 11.7 and 8.4 µm, respectively. At pH 1.2, in vitro dissolution studies showed good gastro-resistance for both formulations. At pH 6.8, the sodium alendronate release from the microparticles was delayed and was controlled by Fickian diffusion. In conclusion, the prepared microparticles showed high encapsulation efficiency of sodium alendronate presenting gastro-resistance and sustained release suitable for its oral administration.
Resumo:
The dewatering of iron ore concentrates requires large capacity in addition to producing a cake with low moisture content. Such large processes are commonly energy intensive and means to lower the specific energy consumption are needed. Ceramic capillary action disc filters incorporate a novel filter medium enabling the harnessing of capillary action, which results in decreased energy consumption in comparison to traditional filtration technologies. As another benefit, the filter medium is mechanically and chemically more durable than, for example, filter cloths and can, thus, withstand harsh operating conditions and possible regeneration better than other types of filter media. In iron ore dewatering, the regeneration of the filter medium is done through a combination of several techniques: (1) backwashing, (2) ultrasonic cleaning, and (3) acid regeneration. Although it is commonly acknowledged that the filter medium is affected by slurry particles and extraneous compounds, published research, especially in the field of dewatering of mineral concentrates, is scarce. Whereas the regenerative effect of backwashing and ultrasound are more or less mechanical, regeneration with acids is based on chemistry. The chemistry behind the acid regeneration is, naturally, dissolution. The dissolution of iron oxide particles has been extensively studied over several decades but those studies may not necessarily be directly applicable in the regeneration of the filter medium which has undergone interactions with the slurry components. The aim of this thesis was to investigate if free particle dissolution indeed correlates with the regeneration of the filter medium. For this purpose, both free particle dissolution and dissolution of surface adhered particles were studied. The focus was on acidic dissolution of iron oxide particles and on the study of the ceramic filter medium used in the dewatering of iron ore concentrates. The free particle dissolution experiments show that the solubility of synthetic fine grained iron oxide particles in oxalic acid could be explained through linear models accounting for the effects of temperature and acid concentration, whereas the dissolution of a natural magnetite is not so easily explained by such models. In addition, the kinetic experiments performed both support and contradict the work of previous authors: the suitable kinetic model here supports previous research suggesting solid state reduction to be the reaction mechanism of hematite dissolution but the formation of a stable iron oxalate is not supported by the results of this research. Several other dissolution mechanisms have also been suggested for iron oxide dissolution in oxalic acid, indicating that the details of oxalate promoted reductive dissolution are not yet agreed and, in this respect, this research offers added value to the community. The results of the regeneration experiments with the ceramic filter media show that oxalic acid is highly effective in removing iron oxide particles from the surface of the filter medium. The dissolution of those particles did not, however, exhibit the expected behaviour, i.e. complete dissolution. The results of this thesis show that although the regeneration of the ceramic filter medium with acids incorporates the dissolution of slurry particles from the surface of the filter medium, the regeneration cannot be assessed purely based upon free particle dissolution. A steady state, dependent on temperature and on the acid concentration, was observed in the dissolution of particles from the surface even though the limit of solubility of free iron oxide particles had not been reached. Both the regeneration capacity and efficiency, with regards to the removal of iron oxide particles, was found to be temperature dependent, but was not affected by the acid concentration. This observation further suggests that the removal of the surface adhered particles does not follow the dissolution of free particles, which do exhibit a dependency on the acid concentration. In addition, changes in the permeability and in the pore structure of the filter medium were still observed after the bulk concentration of dissolved iron had reached a steady state. Consequently, the regeneration of the filter medium continued after the dissolution of particles from the surface had ceased. This observation suggests that internal changes take place at the final stages of regeneration. The regeneration process could, in theory, be divided into two, possibly overlapping, stages: (1) dissolution of surface-adhered particles, and (2) dissolution of extraneous compounds from within the pore structure. In addition to the fundamental knowledge generated during this thesis, tools to assess the effects of parameters on the regeneration of the ceramic filter medium are needed. It has become clear that the same tools used to estimate the dissolution of free particles cannot be used to estimate the regeneration of a filter medium unless only a robust characterisation of the order of regeneration efficiency is needed.
Resumo:
Tests are described showing the results obtained for the determination of REE and the trace elements Rb, Y, Zr, Nb, Cs, Ba, Hf, Ta, Pb, Th and U with ICP-MS methodology for nine basaltic reference materials, and thirteen basalts and amphibolites from the mafic-ultramafic Niquelandia Complex, central Brazil. Sample decomposition for the reference materials was performed by microwave oven digestion (HF and HNO(3), 100 mg of sample), and that for the Niquelandia samples also by Parr bomb treatment (5 days at 200 degrees C, 40 mg of sample). Results for the reference materials were similar to published values, thus showing that the microwave technique can be used with confidence for basaltic rocks. No fluoride precipitates were observed in the microwave-digested solutions. Total recovery of elements, including Zr and Hf, was obtained for the Niquelandia samples, with the exception of an amphibolite. For this latter sample, the Parr method achieved a total digestion, but not so the microwave decomposition; losses, however, were observed only for Zr and Hf, indicating difficulty in dissolving Zr-bearing minerals by microwave acid attack.