972 resultados para Dispersion Coefficients
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this paper, we report our modelling evaluation on the effect of tracer density on axial dispersion in a batch oscillatory baffled column (OBC). Tracer solution of potassium nitrite, its specific density ranged from 1.0 to 1.5, was used in the study, and was injected to the vertical column from either the top or bottom. Local concentration profiles are measured using conductivity probes at two locations along the height of the column. Using the experimental measured concentration profiles together with both 'Tank-in-Series' and 'Plug Flow with Axial Dispersion' models, axial dispersion coefficients were determined and used to describe the effect of specific tracer density on mixing in the OBC. The results showed that the axial dispersion coefficients evaluated by the two models are very similar in both magnitudes and trends, and the range of variations in such coefficients is generally larger for the bottom injection than for the top one. Empirical correlations linking the mechanical energy for mixing, the specific density of tracer and axial dispersion coefficient were established. Using these correlations, we identified the enhancements of up to 269% on axial dispersion for various specific tracer densities. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia do Ambiente, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Neste trabalho estudou-se a implementação de um sistema de vigilância e alerta da qualidade da água de um recurso hídrico, para um possível caso de poluição. Em 25 de Agosto de 2008 foram derramadas 4 toneladas de ácido clorídrico acidentalmente para as águas do rio Febros. Este rio situa-se no concelho de Vila Nova de Gaia e é um pequeno afluente do rio Douro, tendo cerca de 14 km de extensão e tem a particularidade de atravessar o Parque Biológico de Gaia. A falta de uma rápida intervenção e da existência de um plano de ação levou a que parte da fauna e flora fosse destruída. Por este motivo realizou-se este estudo que se baseou na criação de um sistema de vigilância e alerta a ser implementado neste rio. A informação da hidrogeometria do rio e da capacidade de transporte e dispersão de poluentes é indispensável para o bom funcionamento deste sistema. O coeficiente de dispersão longitudinal é um parâmetro muito importante no estudo da qualidade da água. Recorreu-se à utilização da Rodamina WT como marcador, determinando assim a evolução da sua concentração ao longo do tempo e espaço. No cálculo do coeficiente de dispersão foi utilizado o modelo Transient Storage, que demonstrou ser um bom modelo de ajuste aproximando-se dos valores medidos em campo. Para três estações diferentes com distâncias de 290, 390 e 1100 metros do ponto de injeção, obtiveram-se valores de coeficiente de dispersão de 0,18, 0,15 e 0,39 m2/s respetivamente. Os valores do ajuste expressos sob a forma de coeficiente de correlação foram 0,988, 0,998 e 0,986, para a mesma ordem de estações. A constante de rearejamento do rio foi também determinada recorrendo ao método dos marcadores inertes, utilizando o propano como marcador gasoso. A constante determinada próximo de Casal Drijo, entre 2 estações de amostragem a 140 e 290 m do local de injeção, foi de 13,4 dia-1. Com os resultados do coeficiente de dispersão e da constante de rearejamento para além da velocidade e caudal da corrente do rio conseguir-se-á construir o modelo de simulação e previsão de um possível poluente. O sistema de vigilância a implementar sugere-se assim que seja construído por duas partes, uma de análise de evolução da nuvem de poluição e plano de ação outra de monitorização contínua e emissão de alerta. Após uma análise do investimento à implementação deste sistema chegou-se à conclusão que o valor de investimento é de 15.182,00 €.
Resumo:
Results of high level ab initio calculations of the intermolecular potentials and theoretical dispersion coefficients for the Ne2 and Ar2 dimers were utilized to build analytical potentials for these species. The obtained potentials were used in the calculation of the dimers rovibrationals levels, and their respective spectroscopic constants determined. A comparison of high level experimental data with our theoretical results shows a very good agreement for Ne2, and also a good agreement for the Ar2 dimer.
Resumo:
We report a Lattice-Boltzmann scheme that accounts for adsorption and desorption in the calculation of mesoscale dynamical properties of tracers in media of arbitrary complexity. Lattice Boltzmann simulations made it possible to solve numerically the coupled Navier-Stokes equations of fluid dynamics and Nernst-Planck equations of electrokinetics in complex, heterogeneous media. With the moment propagation scheme, it became possible to extract the effective diffusion and dispersion coefficients of tracers, or solutes, of any charge, e.g., in porous media. Nevertheless, the dynamical properties of tracers depend on the tracer-surface affinity, which is not purely electrostatic and also includes a species-specific contribution. In order to capture this important feature, we introduce specific adsorption and desorption processes in a lattice Boltzmann scheme through a modified moment propagation algorithm, in which tracers may adsorb and desorb from surfaces through kinetic reaction rates. The method is validated on exact results for pure diffusion and diffusion-advection in Poiseuille flows in a simple geometry. We finally illustrate the importance of taking such processes into account in the time-dependent diffusion coefficient in a more complex porous medium.
Resumo:
There is an increasing reliance on computers to solve complex engineering problems. This is because computers, in addition to supporting the development and implementation of adequate and clear models, can especially minimize the financial support required. The ability of computers to perform complex calculations at high speed has enabled the creation of highly complex systems to model real-world phenomena. The complexity of the fluid dynamics problem makes it difficult or impossible to solve equations of an object in a flow exactly. Approximate solutions can be obtained by construction and measurement of prototypes placed in a flow, or by use of a numerical simulation. Since usage of prototypes can be prohibitively time-consuming and expensive, many have turned to simulations to provide insight during the engineering process. In this case the simulation setup and parameters can be altered much more easily than one could with a real-world experiment. The objective of this research work is to develop numerical models for different suspensions (fiber suspensions, blood flow through microvessels and branching geometries, and magnetic fluids), and also fluid flow through porous media. The models will have merit as a scientific tool and will also have practical application in industries. Most of the numerical simulations were done by the commercial software, Fluent, and user defined functions were added to apply a multiscale method and magnetic field. The results from simulation of fiber suspension can elucidate the physics behind the break up of a fiber floc, opening the possibility for developing a meaningful numerical model of the fiber flow. The simulation of blood movement from an arteriole through a venule via a capillary showed that the model based on VOF can successfully predict the deformation and flow of RBCs in an arteriole. Furthermore, the result corresponds to the experimental observation illustrates that the RBC is deformed during the movement. The concluding remarks presented, provide a correct methodology and a mathematical and numerical framework for the simulation of blood flows in branching. Analysis of ferrofluids simulations indicate that the magnetic Soret effect can be even higher than the conventional one and its strength depends on the strength of magnetic field, confirmed experimentally by Völker and Odenbach. It was also shown that when a magnetic field is perpendicular to the temperature gradient, there will be additional increase in the heat transfer compared to the cases where the magnetic field is parallel to the temperature gradient. In addition, the statistical evaluation (Taguchi technique) on magnetic fluids showed that the temperature and initial concentration of the magnetic phase exert the maximum and minimum contribution to the thermodiffusion, respectively. In the simulation of flow through porous media, dimensionless pressure drop was studied at different Reynolds numbers, based on pore permeability and interstitial fluid velocity. The obtained results agreed well with the correlation of Macdonald et al. (1979) for the range of actual flow Reynolds studied. Furthermore, calculated results for the dispersion coefficients in the cylinder geometry were found to be in agreement with those of Seymour and Callaghan.
Resumo:
Density functional theory (DFT) is a powerful approach to electronic structure calculations in extended systems, but suffers currently from inadequate incorporation of long-range dispersion, or Van der Waals (VdW) interactions. VdW-corrected DFT is tested for interactions involving molecular hydrogen, graphite, single-walled carbon nanotubes (SWCNTs), and SWCNT bundles. The energy correction, based on an empirical London dispersion term with a damping function at short range, allows a reasonable physisorption energy and equilibrium distance to be obtained for H-2 on a model graphite surface. The VdW-corrected DFT calculation for an (8, 8) nanotube bundle reproduces accurately the experimental lattice constant. For H-2 inside or outside an (8, 8) SWCNT, we find the binding energies are respectively higher and lower than that on a graphite surface, correctly predicting the well known curvature effect. We conclude that the VdW correction is a very effective method for implementing DFT calculations, allowing a reliable description of both short-range chemical bonding and long-range dispersive interactions. The method will find powerful applications in areas of SWCNT research where empirical potential functions either have not been developed, or do not capture the necessary range of both dispersion and bonding interactions.
Resumo:
A consequence of a loss of coolant accident is that the local insulation material is damaged and maybe transported to the containment sump where it can penetrate and/or block the sump strainers. An experimental and theoretical study, which examines the transport of mineral wool fibers via single and multi-effect experiments is being performed. This paper focuses on the experiments and simulations performed for validation of numerical models of sedimentation and resuspension of mineral wool fiber agglomerates in a racetrack type channel. Three velocity conditions are used to test the response of two dispersed phase fiber agglomerates to two drag correlations and to two turbulent dispersion coefficients. The Eulerian multiphase flow model is applied with either one or two dispersed phases.
Resumo:
Higher order (2,4) FDTD schemes used for numerical solutions of Maxwell`s equations are focused on diminishing the truncation errors caused by the Taylor series expansion of the spatial derivatives. These schemes use a larger computational stencil, which generally makes use of the two constant coefficients, C-1 and C-2, for the four-point central-difference operators. In this paper we propose a novel way to diminish these truncation errors, in order to obtain more accurate numerical solutions of Maxwell`s equations. For such purpose, we present a method to individually optimize the pair of coefficients, C-1 and C-2, based on any desired grid size resolution and size of time step. Particularly, we are interested in using coarser grid discretizations to be able to simulate electrically large domains. The results of our optimization algorithm show a significant reduction in dispersion error and numerical anisotropy for all modeled grid size resolutions. Numerical simulations of free-space propagation verifies the very promising theoretical results. The model is also shown to perform well in more complex, realistic scenarios.
Resumo:
The dispersion of the samples in soil particle-size analysis is a fundamental step, which is commonly achieved with a combination of chemical agents and mechanical agitation. The purpose of this study was to evaluate the efficiency of a low-speed reciprocal shaker for the mechanical dispersion of soil samples of different textural classes. The particle size of 61 soil samples was analyzed in four replications, using the pipette method to determine the clay fraction and sieving to determine coarse, fine and total sand fractions. The silt content was obtained by difference. To evaluate the performance, the results of the reciprocal shaker (RSh) were compared with data of the same soil samples available in reports of the Proficiency testing for Soil Analysis Laboratories of the Agronomic Institute of Campinas (Prolab/IAC). The accuracy was analyzed based on the maximum and minimum values defining the confidence intervals for the particle-size fractions of each soil sample. Graphical indicators were also used for data comparison, based on dispersion and linear adjustment. The descriptive statistics indicated predominantly low variability in more than 90 % of the results for sand, medium-textured and clay samples, and for 68 % of the results for heavy clay samples, indicating satisfactory repeatability of measurements with the RSh. Medium variability was frequently associated with silt, followed by the fine sand fraction. The sensitivity analyses indicated an accuracy of 100 % for the three main separates (total sand, silt and clay), in all 52 samples of the textural classes heavy clay, clay and medium. For the nine sand soil samples, the average accuracy was 85.2 %; highest deviations were observed for the silt fraction. In relation to the linear adjustments, the correlation coefficients of 0.93 (silt) or > 0.93 (total sand and clay), as well as the differences between the angular coefficients and the unit < 0.16, indicated a high correlation between the reference data (Prolab/IAC) and results obtained with the RSh. In conclusion, the mechanical dispersion by the reciprocal shaker of soil samples of different textural classes was satisfactory. The results allowed recommending the use of the equipment at low agitation for particle size- analysis. The advantages of this Brazilian apparatus are its low cost, the possibility to simultaneously analyze a great number of samples using ordinary, easily replaceable glass or plastic bottles.
Resumo:
Microstructural changes, that is an important feature for the understanding of the velocity variance in sedimentation is investigated with numerical simulations. The simulations are used to describe velocity fluctuations and hydrodynamic dispersion in a suspension of interacting point-particles sedimenting in a rectangular box with periodic sides and impenetrable bottom and top. It is observed how the positions of the particles evolve in a finite container. The suspension that was initially random in the gravity direction only, tends to be fully randomized as a result of the relative arrangements of the particles and the hydrodynamic interactions between them. The computer simulations, based on statistics over a significant number of particle configurations, suggest velocity variances and diffusivities dependent on the size of the simulated system but with anisotropy in velocity fluctuations and diffusion coefficients nearly independent of the box size.
Resumo:
A wind-tunnel study was conducted to investigate ventilation of scalars from urban-like geometries at neighbourhood scale by exploring two different geometries a uniform height roughness and a non-uniform height roughness, both with an equal plan and frontal density of λ p = λ f = 25%. In both configurations a sub-unit of the idealized urban surface was coated with a thin layer of naphthalene to represent area sources. The naphthalene sublimation method was used to measure directly total area-averaged transport of scalars out of the complex geometries. At the same time, naphthalene vapour concentrations controlled by the turbulent fluxes were detected using a fast Flame Ionisation Detection (FID) technique. This paper describes the novel use of a naphthalene coated surface as an area source in dispersion studies. Particular emphasis was also given to testing whether the concentration measurements were independent of Reynolds number. For low wind speeds, transfer from the naphthalene surface is determined by a combination of forced and natural convection. Compared with a propane point source release, a 25% higher free stream velocity was needed for the naphthalene area source to yield Reynolds-number-independent concentration fields. Ventilation transfer coefficients w T /U derived from the naphthalene sublimation method showed that, whilst there was enhanced vertical momentum exchange due to obstacle height variability, advection was reduced and dispersion from the source area was not enhanced. Thus, the height variability of a canopy is an important parameter when generalising urban dispersion. Fine resolution concentration measurements in the canopy showed the effect of height variability on dispersion at street scale. Rapid vertical transport in the wake of individual high-rise obstacles was found to generate elevated point-like sources. A Gaussian plume model was used to analyse differences in the downstream plumes. Intensified lateral and vertical plume spread and plume dilution with height was found for the non-uniform height roughness
Resumo:
Consumers often pay different prices for the same product bought in the same store at the same time. However, the demand estimation literature has ignored that fact using, instead, aggregate measures such as the “list” or average price. In this paper we show that this will lead to biased price coefficients. Furthermore, we perform simple comparative statics simulation exercises for the logit and random coefficient models. In the “list” price case we find that the bias is larger when discounts are higher, proportion of consumers facing discount prices is higher and when consumers are more unwilling to buy the product so that they almost only do it when facing discount. In the average price case we find that the bias is larger when discounts are higher, proportion of consumers that have access to discount are similar to the ones that do not have access and when consumers willingness to buy is very dependent on idiosyncratic shocks. Also bias is less problematic in the average price case in markets with a lot of bargain deals, so that prices are as good as individual. We conclude by proposing ways that the econometrician can reduce this bias using different information that he may have available.