209 resultados para Dispatch
Resumo:
In competitive electricity markets with deep concerns at the efficiency level, demand response programs gain considerable significance. In the same way, distributed generation has gained increasing importance in the operation and planning of power systems. Grid operators and utilities are taking new initiatives, recognizing the value of demand response and of distributed generation for grid reliability and for the enhancement of organized spot market´s efficiency. Grid operators and utilities become able to act in both energy and reserve components of electricity markets. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The proposed method has been computationally implemented and its application is illustrated in this paper using a 32 bus distribution network with 32 medium voltage consumers.
Resumo:
Congestion management of transmission power systems has achieve high relevance in competitive environments, which require an adequate approach both in technical and economic terms. This paper proposes a new methodology for congestion management and transmission tariff determination in deregulated electricity markets. The congestion management methodology is based on a reformulated optimal power flow, whose main goal is to obtain a feasible solution for the re-dispatch minimizing the changes in the transactions resulting from market operation. The proposed transmission tariffs consider the physical impact caused by each market agents in the transmission network. The final tariff considers existing system costs and also costs due to the initial congestion situation and losses. This paper includes a case study for the 118 bus IEEE test case.
Resumo:
This paper presents a Unit Commitment model with reactive power compensation that has been solved by Genetic Algorithm (GA) optimization techniques. The GA has been developed a computational tools programmed/coded in MATLAB. The main objective is to find the best generations scheduling whose active power losses are minimal and the reactive power to be compensated, subjected to the power system technical constraints. Those are: full AC power flow equations, active and reactive power generation constraints. All constraints that have been represented in the objective function are weighted with a penalty factors. The IEEE 14-bus system has been used as test case to demonstrate the effectiveness of the proposed algorithm. Results and conclusions are dully drawn.
Resumo:
This paper proposes two meta-heuristics (Genetic Algorithm and Evolutionary Particle Swarm Optimization) for solving a 15 bid-based case of Ancillary Services Dispatch in an Electricity Market. A Linear Programming approach is also included for comparison purposes. A test case based on the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is used to demonstrate that the use of meta-heuristics is suitable for solving this kind of optimization problem. Faster execution times and lower computational resources requirements are the most relevant advantages of the used meta-heuristics when compared with the Linear Programming approach.
Resumo:
Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.
Resumo:
Conferência: 39th Annual Conference of the IEEE Industrial-Electronics-Society (IECON) - NOV 10-14, 2013
Resumo:
Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.
Resumo:
Recent changes in the operation and planning of power systems have been motivated by the introduction of Distributed Generation (DG) and Demand Response (DR) in the competitive electricity markets' environment, with deep concerns at the efficiency level. In this context, grid operators, market operators, utilities and consumers must adopt strategies and methods to take full advantage of demand response and distributed generation. This requires that all the involved players consider all the market opportunities, as the case of energy and reserve components of electricity markets. The present paper proposes a methodology which considers the joint dispatch of demand response and distributed generation in the context of a distribution network operated by a virtual power player. The resources' participation can be performed in both energy and reserve contexts. This methodology contemplates the probability of actually using the reserve and the distribution network constraints. Its application is illustrated in this paper using a 32-bus distribution network with 66 DG units and 218 consumers classified into 6 types of consumers.
Resumo:
The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.
Resumo:
The provision of reserves in power systems is of great importance in what concerns keeping an adequate and acceptable level of security and reliability. This need for reserves and the way they are defined and dispatched gain increasing importance in the present and future context of smart grids and electricity markets due to their inherent competitive environment. This paper concerns a methodology proposed by the authors, which aims to jointly and optimally dispatch both generation and demand response resources to provide the amounts of reserve required for the system operation. Virtual Power Players are especially important for the aggregation of small size demand response and generation resources. The proposed methodology has been implemented in MASCEM, a multi agent system also developed at the authors’ research center for the simulation of electricity markets.
Resumo:
OBJECTIVE: In order to improve the quality of our Emergency Medical Services (EMS), to raise bystander cardiopulmonary resuscitation rates and thereby meet what is becoming a universal standard in terms of quality of emergency services, we decided to implement systematic dispatcher-assisted or telephone-CPR (T-CPR) in our medical dispatch center, a non-Advanced Medical Priority Dispatch System. The aim of this article is to describe the implementation process, costs and results following the introduction of this new "quality" procedure. METHODS: This was a prospective study. Over an 8-week period, our EMS dispatchers were given new procedures to provide T-CPR. We then collected data on all non-traumatic cardiac arrests within our state (Vaud, Switzerland) for the following 12months. For each event, the dispatchers had to record in writing the reason they either ruled out cardiac arrest (CA) or did not propose T-CPR in the event they did suspect CA. All emergency call recordings were reviewed by the medical director of the EMS. The analysis of the recordings and the dispatchers' written explanations were then compared. RESULTS: During the 12-month study period, a total of 497 patients (both adults and children) were identified as having a non-traumatic cardiac arrest. Out of this total, 203 cases were excluded and 294 cases were eligible for T-CPR. Out of these eligible cases, dispatchers proposed T-CPR on 202 occasions (or 69% of eligible cases). They also erroneously proposed T-CPR on 17 occasions when a CA was wrongly identified (false positive). This represents 7.8% of all T-CPR. No costs were incurred to implement our study protocol and procedures. CONCLUSIONS: This study demonstrates it is possible, using a brief campaign of sensitization but without any specific training, to implement systematic dispatcher-assisted cardiopulmonary resuscitation in a non-Advanced Medical Priority Dispatch System such as our EMS that had no prior experience with systematic T-CPR. The results in terms of T-CPR delivery rate and false positive are similar to those found in previous studies. We found our results satisfying the given short time frame of this study. Our results demonstrate that it is possible to improve the quality of emergency services at moderate or even no additional costs and this should be of interest to all EMS that do not presently benefit from using T-CPR procedures. EMS that currently do not offer T-CPR should consider implementing this technique as soon as possible, and we expect our experience may provide answers to those planning to incorporate T-CPR in their daily practice.
Resumo:
A quarterly publication by the Division of Soil Conservation
Resumo:
A quarterly publication by the Division of Soil Conservation
Resumo:
A quarterly publication by the Division of Soil Conservation