873 resultados para Dislocation Starvation
Resumo:
Using molecular dynamics simulations, we show that the mechanical deformation behaviors of single-crystalline nickel nanowires are quite different from their bulk counterparts. Correlation between the obtained stress-strain curves and the visualized defect evolution during deformation processes clearly demonstrates that a sequence of complex dislocation slip events results in a state of dislocation starvation, involving the nucleation and propagation of dislocations until they finally escape from the wires, so that the wires deform elastically until new dislocations are generated. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
A small-strain two-dimensional discrete dislocation plasticity (DDP) framework is developed wherein dislocation motion is caused by climb-assisted glide. The climb motion of the dislocations is assumed to be governed by a drag-type relation similar to the glide-only motion of dislocations: such a relation is valid when vacancy kinetics is either diffusion limited or sink limited. The DDP framework is employed to predict the effect of dislocation climb on the uniaxial tensile and pure bending response of single crystals. Under uniaxial tensile loading conditions, the ability of dislocations to bypass obstacles by climb results in a reduced dislocation density over a wide range of specimen sizes in the climb-assisted glide case compared to when dislocation motion is only by glide. A consequence is that, at least in a single slip situation, size effects due to dislocation starvation are reduced. By contrast, under pure bending loading conditions, the dislocation density is unaffected by dislocation climb as geometrically necessary dislocations (GNDs) dominate. However, climb enables the dislocations to arrange themselves into lower energy configurations which significantly reduces the predicted bending size effect as well as the amount of reverse plasticity observed during unloading. The results indicate that the intrinsic plasticity material length scale associated with GNDs is strongly affected by thermally activated processes and will be a function of temperature. © 2013 IOP Publishing Ltd.
Resumo:
Written by the surgeons of the Exeter Hip Team and their colleagues from around the world, this book describes 40 years of innovation and development with cemented hip replacement. Topics covered include the basic science behind successful cemented hip replacement, modern surgical techniques and recent advances. There is also extensive coverage of the revision techniques developed at Exeter and elsewhere, focussing on femoral and acetabular impaction grafting. Each chapter is a self-contained article with an emphasis, where appropriate, on practical techniques and surgical tips, supported by line drawings and intra-operative photographs.
Resumo:
Magnesium alloys have been of growing interest to various engineering applications, such as the automobile, aerospace, communication and computer industries due to their low density, high specific strength, good machineability and availability as compared with other structural materials. However, most Mg alloys suffer from poor plasticity due to their Hexagonal Close Packed structure. Grain refinement has been proved to be an effective method to enhance the strength and alter the ductility of the materials. Several methods have been proposed to produce materials with nanocrystalline grain structures. So far, most of the research work on nanocrystalline materials has been carried out on Face-Centered Cubic and Body-Centered Cubic metals. However, there has been little investigation of nanocrystalline Mg alloys. In this study, bulk coarse-grained and nanocrystalline Mg alloys were fabricated by a mechanical alloying method. The mixed powder of Mg chips and Al powder was mechanically milled under argon atmosphere for different durations of 0 hours (MA0), 10 hours (MA10), 20 hours (MA20), 30 hours (MA30) and 40 hours (MA40), followed by compaction and sintering. Then the sintered billets were hot-extruded into metallic rods with a 7 mm diameter. The obtained Mg alloys have a nominal composition of Mg–5wt% Al, with grain sizes ranging from 13 μm down to 50 nm, depending on the milling durations. The microstructure characterization and evolution after deformation were carried out by means of Optical microscopy, X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy, Scanning Probe Microscopy and Neutron Diffraction techniques. Nanoindentaion, compression and micro-compression tests on micro-pillars were used to study the size effects on the mechanical behaviour of the Mg alloys. Two kinds of size effects on the mechanical behaviours and deformation mechanisms were investigated: grain size effect and sample size effect. The nanoindentation tests were composed of constant strain rate, constant loading rate and indentation creep tests. The normally reported indentation size effect in single crystal and coarse-grained crystals was observed in both the coarse-grained and nanocrystalline Mg alloys. Since the indentation size effect is correlated to the Geometrically Necessary Dislocations under the indenter to accommodate the plastic deformation, the good agreement between the experimental results and the Indentation Size Effect model indicated that, in the current nanocrystalline MA20 and MA30, the dislocation plasticity was still the dominant deformation mechanism. Significant hardness enhancement with decreasing grain size, down to 58 nm, was found in the nanocrystalline Mg alloys. Further reduction of grain size would lead to a drop in the hardness values. The failure of grain refinement strengthening with the relatively high strain rate sensitivity of nanocrystalline Mg alloys suggested a change in the deformation mechanism. Indentation creep tests showed that the stress exponent was dependent on the loading rate during the loading section of the indentation, which was related to the dislocation structures before the creep starts. The influence of grain size on the mechanical behaviour and strength of extruded coarse-grained and nanocrystalline Mg alloys were investigated using uniaxial compression tests. The macroscopic response of the Mg alloys transited from strain hardening to strain softening behaviour, with grain size reduced from 13 ìm to 50 nm. The strain hardening was related to the twinning induced hardening and dislocation hardening effect, while the strain softening was attributed to the localized deformation in the nanocrystalline grains. The tension–compression yield asymmetry was noticed in the nanocrystalline region, demonstrating the twinning effect in the ultra-fine-grained and nanocrystalline region. The relationship k tensions < k compression failed in the nanocrystalline Mg alloys; this was attributed to the twofold effect of grain size on twinning. The nanocrystalline Mg alloys were found to exhibit increased strain rate sensitivity with decreasing grain size, with strain rate ranging from 0.0001/s to 0.01/s. Strain rate sensitivity of coarse-grained MA0 was increased by more than 10 times in MA40. The Hall-Petch relationship broke down at a critical grain size in the nanocrystalline region. The breakdown of the Hall-Petch relationship and the increased strain rate sensitivity were due to the localized dislocation activities (generalization and annihilation at grain boundaries) and the more significant contribution from grain boundary mediated mechanisms. In the micro-compression tests, the sample size effects on the mechanical behaviours were studied on MA0, MA20 and MA40 micro-pillars. In contrast to the bulk samples under compression, the stress-strain curves of MA0 and MA20 micro-pillars were characterized with a number of discrete strain burst events separated by nearly elastic strain segments. Unlike MA0 and MA20, the stress-strain curves of MA40 micro-pillars were smooth, without obvious strain bursts. The deformation mechanisms of the MA0 and MA20 micro-pillars under micro-compression tests were considered to be initially dominated by deformation twinning, followed by dislocation mechanisms. For MA40 pillars, the deformation mechanisms were believed to be localized dislocation activities and grain boundary related mechanisms. The strain hardening behaviours of the micro-pillars suggested that the grain boundaries in the nanocrystalline micro-pillars would reduce the source (nucleation sources for twins/dislocations) starvation hardening effect. The power law relationship of the yield strength on pillar dimensions in MA0, MA20 supported the fact that the twinning mechanism was correlated to the pre-existing defects, which can promote the nucleation of the twins. Then, we provided a latitudinal comparison of the results and conclusions derived from the different techniques used for testing the coarse-grained and nanocrystalline Mg alloy; this helps to better understand the deformation mechanisms of the Mg alloys as a whole. At the end, we summarized the thesis and highlighted the conclusions, contributions, innovations and outcomes of the research. Finally, it outlined recommendations for future work.
Resumo:
Increasingly, individuals want control over their own destiny. This includes the way in which they die and the timing of their death. The desire for self-determination at the end of life is one of the drivers for the ever-increasing number of jurisdictions overseas that are legalising voluntary euthanasia and/or assisted suicide, and for the continuous attempts to reform state and territory law in Australia. Despite public support for law reform in this field, legislative change in Australia is unlikely in the near future given the current political landscape. We argue that there may be another solution which provides competent adults with control over their death and to have any pain and symptoms managed by doctors, but which is currently lawful and consistent with prevailing ethical principles. ‘Voluntary palliated starvation’ refers to the process which occurs when a competent individual chooses to stop eating and drinking, and receives palliative care to address pain, suffering and symptoms that may be experienced by the individual as he or she approaches death. In this article, we argue that, at least in some circumstances, such a death would be lawful for the individual and doctors involved, and consistent with principles of medical ethics.
Resumo:
This study determined the starvation tolerance of Tribolium castaneum (Herbst), Rhyzopertha dominica (F.) and Sitophilus oryzae (L.) in terms of both adult survival and reproduction, the impact of starvation on reproduction not having been studied before. Experiments were conducted at 30°C and 55% or 70% r.h. using a laboratory strain and a field strain of each species. The number of progeny was a better indicator of the impact of starvation on a species than adult survival. Tribolium castaneum was the most tolerant species, requiring up to 35 d starvation before no progeny were produced. Rhyzopertha dominica and S. oryzae required up to 8 d starvation before no progeny were produced. The results suggest that hygiene will have a greater impact on populations of S. oryzae and R. dominica than T. castaneum.
Resumo:
Whole cells, homogenates and mitochondrial obtained from the livers of albino rats which were starved for 6 days or more showed a 50% decrease in oxidative activity. The decrease could be corrected by the addition of cytochrome c in vitro. The phosphorylative activity of mitochondria remained unaffected. The decrease in oxidative rate was not observed when starving animals were given the anti-hypercholesterolaemic drug clofibrate. The total cellular concentration of cytochrome c was not affected by starvation. However, the concentration of the pigment in hepatic mitochondria isolated from starving animals was less than half that in normal mitochondria. Clofibrate-treated animals did not show a decreased concentration of cytochrome c in hepatic mitochondria. Mitochondria isolated from starving animals, though deficient in cytochrome c, did not show any decrease in succinate dehydrogenase activity or in the rate of substrate-dependent reduction of potassium ferricyanide or attendant phosphorylation. In coupled mitochondria, ferricyanide may not accept electrons from the cytochrome c in the respiratory chain. Starvation decreases the concentration of high-affinity binding sites for cytochrome c on the mitochondrial membrane. The dissociation constant increases in magnitude.
Resumo:
The impression creep behaviour of zinc is studied in the range 300 to 500 K and the results are compared with the data from conventional creep tests. The steady-state impression velocity is found to exhibit the same stress and temperature dependence as in conventional tensile creep with the same power law stress exponent. Also studied is the effect of indenter size on the impression velocity. The thermal activation parameters for plastic flow at high temperatures derived from a number of testing techniques agree reasonably well. Grain boundary sliding is shown to be unimportant in controlling the rate of plastic flow at high temperatures. It is observed that the Cottrell-Stokes law is obeyed during high-temperature deformation of zinc. It is concluded that a mechanism such as forest intersection involving attractive trees controls the high-temperature flow rather than a diffusion mechanism.
Resumo:
Phosphine resistance alleles might be expected to negatively affect energy demanding activities such as walking and flying, because of the inverse relationship between phosphine resistance and respiration. We used an activity monitoring system to quantify walking of Rhyzopertha dominica (F.) and a flight chamber to estimate their propensity for flight initiation. No significant difference in the duration of walking was observed between the strongly resistant, weakly resistant, and susceptible strains of R. dominica we tested, and females walked significantly more than males regardless of genotype. The walking activity monitor revealed no pattern of movement across the day and no particular time of peak activity despite reports of peak activity of R. dominica and Tribolium castaneum (Herbst) under field conditions during dawn and dusk. Flight initiation was significantly higher for all strains at 28 degrees C and 55% relative humidity than at 25, 30, 32, and 35 degrees C in the first 24 h of placing beetles in the flight chamber. Food deprivation and genotype had no significant effect on flight initiation. Our results suggest that known resistance alleles in R. dominica do not affect insect mobility and should therefore not inhibit the dispersal of resistant insects in the field.
Resumo:
Introduction Malorientation of the socket contributes to instability after hip arthroplasty but the optimal orientation of the cup in relation to the pelvis has not been unequivocally described. Large radiological studies are few and problems occur with film standardisation, measurement methodology used and alternative definitions of describing acetabular orientation. Methods A cohort of 1,578 patients from a single institution is studied where all patient data was collected prospectively. Risk factors for patients undergoing surgery are analysed. Radiological data was compared between a series of non-dislocating hips and dislocating cases matched 2:1 by operation type, age and diagnosis. Results The overall dislocation rate for all 1,578 cases was 3.23% but the rate varied according to the type of surgery performed. The rate in uncomplicated primary cases was 2.4% which increased to 9.3% for second stage implantation for a two stage procedure for infection. There was no significant difference in the variability of the dislocating and non-dislocating groups for either inclination (p = 0.393) or anteversion (p = 0.661). Conclusions A “safe zone” for socket orientation to avoid dislocation could not be defined. The cause of dislocation is multifactorial, re-establishing the anatomic centre of rotation, balancing soft tissues and avoidance of impingement around the hip are important considerations.
Resumo:
Microcrystalline γ-Y2Si2O7 was indented at room temperature and the deformation microstructure was investigated by transmission electron microscopy in the vicinity of the indent. The volume directly beneath the indent comprises nanometer-sized grains delimited by an amorphous phase while dislocations dominate in the periphery either as dense slip bands in the border of the indent or, further away, as individual dislocations. The amorphous layers and the slip bands are a few nanometers thick. They lie along well-defined crystallographic planes. The microstructural organization is consistent with a stress-induced amorphization process whereby, under severe mechanical conditions, the crystal to amorphous transformation is mediated by slip bands containing a high density of dislocations. It is suggested that the damage tolerance of γ-Y2Si2O7, which is exceptional for a ceramic material, benefits from this transformation.
Resumo:
Early studies on grain boundary sliding (GBS) in Mg alloys have suggested frequently that the contribution of GBS to creep is high even under conditions corresponding to dislocation creep. The role of creep strain and grain size in influencing the experimental measurements has not been clearly identified. Grain boundary sliding measurements were conducted in detail over experimental conditions corresponding to diffusion creep as well as dislocation creep in a single-phase Mg-0.7 wt pet Al alloy. The results indicated clearly that the GBS contribution to creep was Very high during,, diffusion creep at low stresses (similar to 75 pct) and substantially reduced during dislocation creep at high stresses (similar to 15 pct). These measurements were consistent with the observation of significant intragranular slip band activity observed in most grains at high stresses and very little slip band activity at low stresses. The experimental measurements and analysis indicated also that the GBS contribution to creep was high during the initial stages of creep and decreased to a steady-state value at large strains.
Resumo:
A total of 177 patients with primary dislocation of the patella (PDP) were admitted to two trauma centers in Helsinki, Finland during 1991 to 1992. The inclusion criteria were: 1. Acute (≤14 days old) first-time lateral dislocation of the patella. 2. No previous knee operations or major knee injuries. 3. No ligament injuries to be repaired. 4. No osteochondral fractures requiring fixation. 50 patients were excluded. 30 of these excluded patients would have met the inclusion criteria, 19 patients received treatment by consultants not involved in the study, 7 refused to participate and 4 had an erroneous randomization. 127 patients including, 82 females, were then randomized to have either tailor-made operative procedure (group O) or conservative treatment (group C). The aftercare was similar for both groups. The mean age of the patients was 20 (9-47) years. All patients were subjected to analysis of trauma history (starting position and knee movement during the dislocation), examination under anesthesia (EUA) and arthroscopy. 70 patients (52 females) were randomized by their odd year of birth to operative group O and 57 patients (30 females) by their even year of birth to conservative group C. The diagnosis of PDP was based on locked dislocation in 68 patients, on dislocatability in EUA in 47 patients, and on subluxation in EUA combined with typical intra-articular lesions in 12 patients. In group O, 63 patients had exploration of the injuries on the medial side of the knee and tailor made reconstruction added with lateral release in 54 cases. The medial injury was operated by suturing in 39 patients, by duplication in 18 patients and by additional augmentation of the medial patellofemoral ligament (MPFL) with adductor magnus tenodesis in 6 patients. 7 patients, without locking in trauma history and only subluxation in EUA had only lateral release for realignment. In adductor magnus tenodesis the proximal end of the distal tendinous part was rerouted to the upper medial border of the patella. In the conservative group C, the treatment was adjusted to the extent of patellar displacement in EUA. Patients with dislocation in EUA had 3 weeks’ immobilization with the knee in slight flexion. Mobilization was started with a soft patellar stabilizing orthosis (PSO) used for additional three weeks. The patients with subluxation in EUA wore an orthosis for six weeks. The aftercare was similar in group O. The outcome was similar in both groups. After an average of 25 (20-45) months´ follow-up, the subjective result was better in group C in respect of the mean Hughston VAS knee score (87 for group O and 90 for group C, p=0.04, visual analog scale), but similar in terms of the patient’s own overall opinion and the mean Lysholm II knee score. Recurrent instability episodes occurred in 18 patients in group O and in 20 patients in group C. After an average of 7 (6-9) years´ follow-up, the groups did not show statistical difference either in respect of the patient’s own overall opinion, or the mean Hughston VAS and Kujala knee scores. The proportions of stable patellae was 25/70 (36%) in group O and 17/57 (30%) in group O (p=0.5). In a multivariate risk analysis, there was a correlation between low Kujala score (<90) as dependent parameter and female gender (OR: 3.5; 95% CI: 1.4-9.0), and loose body on primary radiographs (OR: 4.1; 95% CI: 1.2-15). Recurrent instability correlated with young age at the time of PDP (OR: 0.9; 95% CI: 0.8-1.0/year). Girls with open tibial apophysis had the worst prognosis for instability (88%; 95% CI: 77-98). The most common mechanisms in trauma history of the patients were movement to flexion from a straight start (78%) and movement to extension from a well-bent start (8%). Spontaneous relocation of the patella had taken place in 13/39 of girls, in 11/21 of boys, in 26/42 of women and in 17/24 of men with skeletal maturity of the tibia. The dislocation in EUA was non-rotating in 96/126 patients followed by outward rotating dislocation in 14/126 patients. Operative treatment policy in PDP is not recommended. Locking tendency of the patella in PDP depended on the skeletal maturation. Recurrence rate after PDP was higher than expected.
Resumo:
The activation area and activation enthalpy are determined as a function of stress and temperature for alpha titanium. The results indicated that plastic flow below about 700°K occurs by a single thermally activated mechanism. Activation area determined by differential-stress creep tests falls in the range 80−8b2 and does not systematically depend on the impurity content. The total activation enthalpy derived from the temperature and strain-rate dependence of flow stress is 1.15 eV. The experimental data support a lattice hardening mechanism as controlling the low-temperature deformation in alpha titanium.