985 resultados para Disease Vectors
Resumo:
The survey covered by this report was undertaken between 6 th and 9th October 2009 as a follow-up on the during construction surveys of the Bujagali Hydropwer Project (BHPP). In addition to two pre-construction baseline surveys in April 2000 and April 2006, four monitoring surveys have so far been undertaken i.e. in September 2007, April 2008, April 2009 and the present one, in October 2009. The 2009 biannual monitoring surveys were conducted at an upstream and a downstream transect of the BHPP with emphasis on the following aspects: 1. water quality determinants 2. biology and ecology of fishes and food webs 3. fish stock and fish catch including economic aspects of catch and 4. sanitation/vector studies (bilharzias and river blindness)
Resumo:
The result reported were from a monitoring survey no.8 undertaken between 6th and 10th April 2011 during construction period of the Bujagali Hydropwer Project (BHPP). Two pre-construction, baseline surveys in April 2000 and April 2006 were conducted and so far,durin construction phase of the project, seven monitoring surveys have been undertaken i.e. in September 2007, April 2008, April 2009,October 2009, April 2010, September 2010 and the present one, in April 2011. Since 2009 biannual monitoring surveys have been conducted at an upstream and a downstream transect of the BHPP with emphasis on the following aspects: Water quality determinants Biology and ecology of fishes and food webs Fish stock and fish catch including economic aspects of catch and Sanitation/vector studies (bilharzias and river blindness)
Resumo:
The results reported on were from a monitoring survey No. 10 undertaken between 23 rd and 29th April 2012 during construction period of the Bujagali Hydropower Project (BHPP). Two pre-construction, baseline surveys in April 2000 and April 2006 were conducted and so far, during construction phase of the project, nine monitoring surveys have been undertaken i.e. in September 2007, April 2008, April 2009, October 2009, April 2010, September 2010, April 2011, September 2011and the present one, in April 2012. Since 2009 biannual monitoring surveys have been conducted at an upstream and a downstream transect of the BHPP with emphasis on the following aspects: water quality determinants biology and ecology of fishes and food webs fish stock and fish catch including economic aspects of catch and sanitation/vector studies (bilharzias and river blindness) During this survey, baseline assessment of the above mentioned studies was conducted in the reservoir behind the dam, including studies on algae, zooplankton and benthic macroinvertebrates which had been restrained since April 2008. The findings of baseline assessment of the reservoir are also contained in this report and are compared with those obtained from Transect 1(Upstream) and Transect 2 (Downstream).
Resumo:
This monitoring survey No. 11 undertaken between 4th and 9th September 2012 is the second one to be conducted after completion of construction of Bujagali Hydropower Dam. Two pre-construction baseline surveys in April 2000 and April 2006 were conducted and during construction phase, eight monitoring surveys (September 2007, April 2008, April 2009, October 2009, April 2010, September 2010, April 2011, September 2011) were conducted.
Resumo:
The results reported on were from a monitoring survey No.7 undertaken between 4 th and 7th September 2010 during construction period of the Bujagali Hydropower Project (BHPP). Two pre-construction, baseline surveys in April 2000 and April 2006 were conducted and so far, during construction phase of the project, six monitoring surveys have been undertaken i.e. in September 2007, April 2008, April 2009, October 2009, April 2010 and the present one, in September 2010. Since 2009 biannual monitoring surveys have been conducted at an upstream and a downstream transect of the BHPP with emphasis on the following aspects: I. water quality determinants 2. biology and ecology of fishes and food webs 3. fish stock and fish catch including economic aspects of catch and 4. sanitation/vector studies (bilharzias and river blindness)
Resumo:
Bujagali hydropower dam construction is now completed and a reservoir behind the dam has been created, extending all the way up to Kalange-Makwanzi, an upstream transects. During the 10th monitoring survey-April 2012, a third transect was established in the mid of the reservoir where it runs up to 30 m deep and sampled similarly as at the two original sampling transects, Kalange-Makwanzi and Buyala-Kikubamutwe for comparative purposes. This monitoring survey No. 12 undertaken between 25th and 30th April 2013 is the third one to be conducted after completion of construction of Bujagali Hydropower Dam. Two pre-construction baseline surveys in April 2000 and April 2006 were conducted and during construction phase, eight monitoring surveys (September 2007, April 2008, April 2009, October 2009, April 2010, September 2010, April 2011, September 2011) were conducted. Since 2009 biannual monitoring surveys have been conducted at an upstream and a downstream transect of the BHPP with emphasis on the following aspects: water quality determinants, biology and ecology of fishes and food webs, fish stock and fish catch including economic aspects of catch and sanitation/vector studies (bilharzias and river blindness). In the post-construction monitoring surveys, the assessments of algae, zooplankton and benthic macro-invertebrates which had been restrained since April 2008 were also included.
Resumo:
The results reported on were from a monitoring survey No. 9 undertaken between 9th and 12th September 2011 during construction period of the Bujagali Hydropower Project (BHPP). Two pre-construction, baseline surveys in April 2000 and April 2006 were conducted and so far, during construction phase of the project, eight monitoring surveys have been undertaken i.e. in September 2007, April 2008, April 2009, October 2009, April 2010, September 2010, April 2011 and the present one, in September 2011. Since 2009 biannual monitoring surveys have been conducted at an upstream and a downstream transect of the BHPP with emphasis on the following aspects: water quality determinants biology and ecology of fishes and food webs fish stock and fish catch including economic aspects of catch and sanitation/vector studies (bilharzias and river blindness)in addition to the above mentioned studies, a soil pH survey was undertaken on 15th October 2011 in the area behind the reservoir whose filling started a week earlier. The findings of pH status in the catchment of the dam are also contained in this report.
Resumo:
This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration's (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) onboard the European Meteorological Satellite programme's (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study anti control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mosquitoes are vectors of arboviruses that can cause encephalitis and hemorrhagic fevers in humans. Aedes serratus (Theobald), Aedes scapularis (Rondani) and Psorophora ferox (Von Humboldt) are potential vectors of arboviruses and are abundant in Vale do Ribeira, located in the Atlantic Forest in the southeast of the State of Sao Paulo, Brazil. The objective of this study was to predict the spatial distribution of these mosquitoes and estimate the risk of human exposure to mosquito bites. Results of the analyses show that humans are highly exposed to bites in the municipalities of Cananeia, Iguape and Ilha Comprida. In these localities the incidence of Rocio encephalitis was 2% in the 1970s. Furthermore, Ae. serratus, a recently implicated vector of yellow fever virus in the State of Rio Grande do Sul, should be a target for the entomological surveillance in the southeastern Atlantic Forest. Considering the continental dimensions of Brazil and the inherent difficulties in sampling its vast area, the habitat suitability method used in the study can be an important tool for predicting the distribution of vectors of pathogens.
Resumo:
Children and the environment cover a broad, interdisciplinary field of research and practice. The social sciences often use the word “environment” to mean the social, political, or economic context of children’s lives, but this bibliography covers physical settings. It focuses on a place-based scale that children can see, hear, taste, smell, touch, and navigate: not large, abstract scales such as national identities or population dynamics, or small scales such as environmental impacts on genes or cell functions. Attention to the everyday settings of children’s lives grew in the 18th century, when Romantic literature introduced the theme of children and nature. In the 19th century, concern for children’s welfare included an interest in conditions for children in burgeoning industrial cities, and justifications for early streetcar and railroad suburbs included claims that they would save children from the dangers of cities and provide the healthful benefits of natural surroundings. In the 20th century, academic disciplines developed different lines of inquiry about the impact of the physical environment on children and how children relate to places: ethnographic studies of children in different parts of the world in the fields of anthropology and geography; sociological studies of different populations of children in different settings; educational research on the learning opportunities that different school and out-of-school settings afford; medical research to understand disease vectors and the impact of pollutants on children; and efforts in the field of environment and behavior research more broadly, to understand how built and designed environments affect children physically, cognitively, socially, and emotionally. At the beginning of the 21st century, children and the environment is an active area of inquiry seeking to understand rapidly changing conditions for children as the world urbanizes, opportunities for free play outdoors and independent mobility erode in many parts of the world, media environments consume more of children’s time, and awareness grows that children need opportunities to contribute to creating sustainable societies.
Resumo:
Gottigere lake with a water spread area of about 14.98 ha is located in the Bellandur Lake catchment of the South Pennar River basin. In recent years, this lake catchment has been subjected to environmental stress mainly due to the rampant unplanned developmental activities in the catchment. The functional ability of the ecosystem is impaired due to structural changes in the ecosystem. This is evident from poor water quality, breeding of disease vectors, contamination of groundwater in the catchment, frequent flooding in the catchment due to topography alteration, decline in groundwater table, erosion in lake bed, etc. The development plans of the region (current as well as the proposed) ignore the integrated planning approaches considering all components of the ecosystem. Serious threats to the sustainability of the region due to lack of holistic approaches in aquatic resources management are land use changes (removal of vegetation cover, etc.), point and non-point sources of pollution impairing water quality, dumping of solid waste (building waste, etc.). Conservation of lake ecosystem is possible only when the physical and chemical integrity of its catchment is maintained. Alteration in the catchment either due to land use changes (leading to paved surface area from vegetation cover), alteration in topography, construction of roads in the immediate vicinity are detrimental to water yield in the catchment and hence, the sustenance of the lake. Open spaces in the form of lakes and parks aid as kidney and lung in an urban ecosystem, which maintain the health of the people residing in the locality. Identification of core buffer zones and conservation of buffer zones (500 to 1000 m from shore) is to be taken up on priority for conservation and sustainable management of Bangalore lakes. Bangalore is located over a ridge delineating four watersheds, viz. Hebbal, Koramangala, Challaghatta and Vrishabhavathi. Lakes and tanks are an integral part of natural drainage and help in retaining water during rainfall, which otherwise get drained off as flash floods. Each lake harvests rainwater from its catchment and surplus flows downstream spilling into the next lake in the chain. The topography of Bangalore has uniquely supported the creation of a large number of lakes. These lakes form chains, being a series of impoundments across streams. This emphasises the interconnectivity among Bangalore lakes, which has to be retained to prevent Bangalore from flooding or from water scarcity. The main source of replenishment of groundwater is the rainfall. The slope of the terrain allows most of the rainwater to flow as run-off. With the steep gradients available in the major valleys of Bangalore, the rainwater will flow out of the city within four to five hours. Only a small fraction of the rainwater infiltrates into the soil. The infiltration of water into the subsoil has declined with more and more buildings and paved road being constructed in the city. Thus the natural drainage of Bangalore is governed by flows from the central ridge to all lower contours and is connected with various tanks and ponds. There are no major rivers flowing in Bangalore and there is an urgent need to sustain these vital ecosystems through proper conservation and management measures. The proposed peripheral ring road connecting Hosur Road (NH 7) and Mysore Road (SH 17) at Gottigere lake falls within the buffer zone of the lake. This would alter the catchment integrity and hence water yield affecting flora, fauna and local people, and ultimately lead to the disappearance of Gottigere lake. Developmental activities in lake catchments, which has altered lake’s ecological integrity is in violation of the Indian Fisheries Act – 1857, the Indian Forest Act – 1927, Wildlife (Protection) Act – 1972, Water (Prevention and Control of Pollution) Act – 1974, Water (Prevention and Control of Pollution) Act – 1977, Forest (Conservation Act) – 1980, Environmental (Protection) Act – 1986, Wildlife (Protection) Amendment Act – 1991 and National Conservation Strategy and Policy Statement on Environment and Development – 1992. Considering 65% decline of waterbodies in Bangalore (during last three decades), decision makers should immediately take preventive measures to ensure that lake ecosystems are not affected. This report discusses the impacts due to the proposed infrastructure developmental activities in the vicinity of Gottigere tank.
Resumo:
Wetlands are the most productive ecosystems, recognized globally for its vital role in sustaining a wide array of biodiversity and provide goods and services. However despite their important role in maintaining the ecology and economy, wetlands in India are endangered by inattention and lack of appreciation for their role. Increased anthropogenic activities such as intense agriculture practices, indiscriminate disposal of industrial effluents and sewage wastes have altered the physical, chemical as well as biological integrity of the ecosystem. This has resulted in the ecological degradation, which is evident from the current ecosystem valuation of Varthur wetland. Global valuation of coastal wetland ecosystem shows a total of 14,785/ha US$ annual economic value. An earlier study of relatively pristine wetland in Bangalore shows the value of Rs. 10,435/ha/day while the polluted wetland shows the value of Rs.20/ha/day. In contrast to this, Varthur, a sewage fed wetland has a value of Rs.118.9/ha/day. The pollutants and subsequent contamination of the wetland has telling effects such as disappearance of native species, dominance of invasive exotic species (such as African catfish), in addition to profuse breeding of disease vectors and pathogens. Water quality analysis revealed of high phosphates (4.22-5.76 ppm) level in addition to the enhanced BOD (119-140 ppm) and decreased DO (0-1.06 ppm). The amplified decline of ecosystem goods and services with degradation of water quality necessitates the implementation of sustainable management strategies to recover the lost wetland benefits.
Resumo:
Wetlands are the most productive ecosystems, recognized globally for its vital role in sustaining a wide array of biodiversity and provide goods and services. However despite their important role in maintaining the ecology and economy, wetlands in India are endangered by inattention and lack of appreciation for their role. Increased anthropogenic activities such as intense agriculture practices, indiscriminate disposal of industrial effluents and sewage wastes have altered the physical, chemical as well as biological integrity of the ecosystem. This has resulted in the ecological degradation, which is evident from the current ecosystem valuation of Varthur wetland. Global valuation of coastal wetland ecosystem shows a total of 14,785/ha US$ annual economic value. An earlier study of relatively pristine wetland in Bangalore shows the value of Rs. 10,435/ha/day while the polluted wetland shows the value of Rs.20/ha/day. In contrast to this, Varthur, a sewage fed wetland has a value of Rs.118.9/ha/day. The pollutants and subsequent contamination of the wetland has telling effects such as disappearance of native species, dominance of invasive exotic species (such as African catfish), in addition to profuse breeding of disease vectors and pathogens. Water quality analysis revealed of high phosphates (4.22-5.76 ppm) level in addition to the enhanced BOD (119-140 ppm) and decreased DO (0-1.06 ppm). The amplified decline of ecosystem goods and services with degradation of water quality necessitates the implementation of sustainable management strategies to recover the lost wetland benefits.
Resumo:
Insect vector-borne diseases, such as malaria and dengue fever (both spread by mosquito vectors), continue to significantly impact health worldwide, despite the efforts put forth to eradicate them. Suppression strategies utilizing genetically modified disease-refractory insects have surfaced as an attractive means of disease control, and progress has been made on engineering disease-resistant insect vectors. However, laboratory-engineered disease refractory genes would probably not spread in the wild, and would most likely need to be linked to a gene drive system in order to proliferate in native insect populations. Underdominant systems like translocations and engineered underdominance have been proposed as potential mechanisms for spreading disease refractory genes. Not only do these threshold-dependent systems have certain advantages over other potential gene drive mechanisms, such as localization of gene drive and removability, extreme engineered underdominance can also be used to bring about reproductive isolation, which may be of interest in controlling the spread of GMO crops. Proof-of-principle establishment of such drive mechanisms in a well-understood and studied insect, such as Drosophila melanogaster, is essential before more applied systems can be developed for the less characterized vector species of interest, such as mosquitoes. This work details the development of several distinct types of engineered underdominance and of translocations in Drosophila, including ones capable of bringing about reproductive isolation and population replacement, as a proof of concept study that can inform efforts to construct such systems in insect disease vectors.