994 resultados para Disease Reservoirs
Resumo:
Murid gammaherpesvirus 4 (MuHV-4) is widely used as a small animal model for understanding gammaherpesvirus infections in man. However, there have been no epidemiological studies of the virus in wild populations of small mammals. As MuHV-4 both infects cells associated with the respiratory and immune systems and attempts to evade immune control via various molecular mechanisms, infection may reduce immunocompetence with potentially serious fitness consequences for individuals. Here we report a longitudinal study of antibody to MuHV-4 in a mixed assemblage of bank voles (Clethrionomys glareolus) and wood mice (Apodemus sylvaticus) in the UK. The study was conducted between April 2001 and March 2004. Seroprevalence was higher in wood mice than bank voles, supporting earlier work that suggested wood mice were the major host even though the virus was originally isolated from a bank vole. Analyses of both the probability of having antibodies and the probability of initial seroconversion indicated no clear seasonal pattern or relationship with host density. Instead, infection risk was most closely associated with individual characteristics, with heavier males having the highest risk. This may reflect individual variation in susceptibility, potentially related to variability in the ability to mount an effective immune response.
Resumo:
We have described the existence of asymptomatic carriers of Plasmodium vivax and Plasmodium falciparum infections in native Amazon populations. Most of them had low parasitemias, detected only by polymerase chain reaction (PCR). Because they remain symptomless and untreated, we wanted to determine whether they could infect Anopheles darlingi Root, the main Brazilian vector, and act as disease reservoirs. Fifteen adult asymptomatic patients (PCR positive only) were selected, and experimental infections of mosquitoes were performed by direct feeding and by a membrane-feeding system. Seventeen adult symptomatic patients with high parasitemias were used as controls. We found an infection rate in An. darlingi of 1.2% for the asymptomatic carriers and 22% for the symptomatic carriers. Although the asymptomatic group infected mosquitoes at a much lower rate, these patients remain infective longer than treated, symptomatic patients. Also, the prevalence of asymptomatic infections is 4 to 5 times higher than symptomatic infections among natives. These results have implications for the malaria control program in Brazil, which focuses essentially on the treatment of symptomatic patients. © 2005 Entomological Society of America.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJECTIVE: To describe the investigation of a sylvatic yellow fever outbreak in the state of Sao Paulo and the main control measures undertaken.METHODS: This is a descriptive study of a sylvatic yellow fever outbreak in the Southwestern region of the state from February to April 2009. Suspected and confirmed cases in humans and in non-human primates were evaluated. Entomological investigation in sylvatic environment involved capture at ground level and in the tree canopy to identify species and detect natural infections. Control measures were performed in urban areas to control Aedes aegypti. Vaccination was directed at residents living in areas with confirmed viral circulation and also at nearby cities according to national recommendation.RESULTS: Twenty-eight human cases were confirmed (39.3% case fatality rate) in rural areas of Sarutaia, Piraju, Tejupa, Avare, and Buri. The deaths of 56 non-human primates were also reported, 91.4% were Allouatta sp. Epizootics was confirmed in two non-human primates in the cities of Itapetininga and Buri. A total of 1,782 mosquitoes were collected, including Haemagogus leucocelaenus, Hg. janthinomys/capricornii, and Sabethes chloropterus, Sa. purpureus and Sa. undosus. Yellow fever virus was isolated from a group of Hg. Leucocelaenus from Buri. Vaccination was carried out in 49 cities, with a total of 1,018,705 doses. Nine serious post-vaccination adverse events were reported.CONCLUSIONS: The cases occurred between February and April 2009 in areas with no recorded yellow fever virus circulation in over 60 years. The outbreak region occurred outside the original recommended vaccination area with a high percentage of susceptible population. The fast adoption of control measures interrupted the human transmission within a month and the confirmation of viral circulation in humans, monkeys and mosquitoes. The results allowed the identification of new areas of viral circulation but further studies are required to clarify the dynamics of the spread of this disease.
Resumo:
The urbanization of visceral leishmaniasis in Brazil has been related to environmental changes, migration, interaction and spread of sylvatic reservoirs and infected dogs to areas with no transmission, and adaptation of the vector Lutzomyia longipalpis to the peridomiciliary environment. From 1980 to 2005, Brazil recorded 59,129 cases of visceral leishmaniasis, 82.5% of which in the Northeast region. Visceral leishmaniasis gradually spread to other regions of the country: in 1998 these other regions reported 15% of all cases, but by 2005 this proportion had increased to 44%. From 1998 to 2005, indigenous cases were reported in 1,904 different municipalities of the country (34.2%). Reservoir and vector control pose major challenges for disease control, since there is a need for better knowledge of vector behavior in urban areas, and control activities involve high operational costs. In recent years the Brazilian Ministry of Health has supported research on the laboratory diagnosis of infection and disease in humans and dogs, treatment of patients, evaluation of the effectiveness of control strategies, and development of new technologies that could contribute to the surveillance and control of visceral leishmaniasis in the country.
Resumo:
Livestock face complex foraging options associated with optimizing nutrient intake while being able to avoid areas posing risk of parasites or disease. Areas of tall nutrient-rich swards around fecal deposits may be attractive for grazing, but might incur fitness costs from parasites. We use the example of dairy cattle and the risks of tuberculosis transmission posed to them by pastures contaminated with badger excreta to examine this trade-off. A risk may be posed either by aerosolized inhalation through investigation or by ingestion via grazing contaminated swards. We quantified the levels of investigation and grazing of 150 dairy cows at badger latrines (accumulations of feces and urine) and crossing points (urination-only sites). Grazing behavior was compared between strip-grazed and rotation-grazed fields. Strip grazing had fields subdivided for grazing periods of
Resumo:
Livestock face complex foraging options associated with optimizing nutrient intake while being able to avoid areas posing risk of parasites or disease. Areas of tall nutrient-rich swards around fecal deposits may be attractive for grazing, but might incur fitness costs from parasites. We use the example of dairy cattle and the risks of tuberculosis transmission posed to them by pastures contaminated with badger excreta to examine this trade-off. A risk may be posed either by aerosolized inhalation through investigation or by ingestion via grazing contaminated swards. We quantified the levels of investigation and grazing of 150 dairy cows at badger latrines (accumulations of feces and urine) and crossing points (urination-only sites). Grazing behavior was compared between strip-grazed and rotation-grazed fields. Strip grazing had fields subdivided for grazing periods of <24 h, whereas rotational grazing involved access to whole fields for 1 to 7 d each. A higher proportion of the herd investigated badger latrines than crossing points or controls. Cattle initially avoided swards around badger latrines but not around crossing points. Avoidance periods were shorter in strip- compared with rotation-grazing systems. In rotation-grazing management, latrines were avoided for longer times, but there were more investigative contacts than with strip-grazing management. If investigation is a major route of tuberculosis transmission, the risk to cattle is greatest in extensive rotation-grazing systems. However, if ingestion of fresh urine is the primary method of transmission, strip-grazing management may pose a greater threat. Farming systems affect the level and type of contact between livestock and wildlife excreta and thus the risks of disease.
Resumo:
Innovative research relating oceans and human health is advancing our understanding of disease-causing organisms in coastal ecosystems. Novel techniques are elucidating the loading, transport and fate of pathogens in coastal ecosystems, and identifying sources of contamination. This research is facilitating improved risk assessments for seafood consumers and those who use the oceans for recreation. A number of challenges still remain and define future directions of research and public policy. Sample processing and molecular detection techniques need to be advanced to allow rapid and specific identification of microbes of public health concern from complex environmental samples. Water quality standards need to be updated to more accurately reflect health risks and to provide managers with improved tools for decision-making. Greater discrimination of virulent versus harmless microbes is needed to identify environmental reservoirs of pathogens and factors leading to human infections. Investigations must include examination of microbial community dynamics that may be important from a human health perspective. Further research is needed to evaluate the ecology of non-enteric water-transmitted diseases. Sentinels should also be established and monitored, providing early warning of dangers to ecosystem health. Taken together, this effort will provide more reliable information about public health risks associated with beaches and seafood consumption, and how human activities can affect their exposure to disease-causing organisms from the oceans.
Resumo:
Desde a década de 1970 não se notificavam casos autóctones de doença de Chagas aguda em São Paulo. em março de 2006 a Vigilância Epidemiológica registrou óbito por doença de Chagas aguda, em Itaporanga, de paciente de seis anos de idade. Exame histopatológico post mortem realizado no Hospital das Clínicas da Faculdade de Medicina de Botucatu confirmou o diagnóstico. Consultamos prontuários de hospitais e entrevistamos profissionais de saúde envolvidos além de familiares do paciente. Descrevemos medidas adotadas in loco para identificar a via de transmissão, reservatórios e vetores. Discutimos as possíveis fontes de infecção. Na região não foram identificados outros casos humanos, vetores ou reservatórios vertebrados infectados por Trypanosoma cruzi. Salientamos a importância de manter a vigilância, mesmo em áreas onde a transmissão de doença de Chagas está interrompida e naquelas ainda infestadas por triatomíneos. Deve-se admitir a hipótese diagnóstica de doença de Chagas quando observados: edema palpebral (uni ou bilateral), insuficiência cardíaca, miocardite, pericardite, anasarca, quadros similares aos de síndrome nefrótica ou glomerulonefrite sem causas outras aparentes, em pacientes com dados epidemiológicos positivos. Encontro, mesmo em raras ocasiões, de triatomíneos na região ou ainda contato com alimento contaminável com formas infectantes de T. cruzi.
Resumo:
Vaccinia virus (VACV), the etiological agent of an exanthematic disease, has been associated with several bovine outbreaks in Brazil since the end of the global vaccination campaign against smallpox. It was previously believed that the vaccine virus used for the WHO global campaign had adapted to an unknown wild reservoir and was sporadically re-emerging in outbreaks in cattle and milkers. At present, it is known that Brazilian VACV is phylogenetically different from the vaccinia virus vaccinal strain, but its origin remains unknown. This study assessed the seroprevalence of orthopoxviruses in domestic and wild animals and farmers from 47 farms in three cities in the southwest region of the state of São Paulo with or without official reports of outbreaks in cattle or humans. Our data indicate a low seroprevalence of antibodies in wild animals and raise interesting questions about the real potential of wild rodents and marsupials as VACV reservoirs, suggesting other routes through which VACV can be spread. © 2013 The Author(s).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction: Studies on Chagas disease deal with the perspective of its occurrence in the Amazon region, which is directly correlated to the population growth and the spread of the bug biotope. The state of Rondônia has an immense source of vectors (Triatomine) and reservoirs of Trypanosoma cruzi. Environmental changes brought forth by the deforestation in the region may cause vector behavior changes and bring these vectors to a closer contact with humans, increasing the probability of vector infection. Methods: This study was carried out to check the occurrence of Chagas disease in the municipality of Monte Negro, Rondônia, Brazil, based on a random sampling of the farms and people wherein blood collection from the population and capturing triatomines were done. The blood samples were submitted to serologic tests to detect antibodies of the IgG class against T. cruzi. The triatomines that were collected had their digestive tract checked for the presence of trypanosomatidae with morphology resembling that of the T. cruzi. Results: The population examined was mostly from other states. From the 322 bugs examined on the microscope, 50% showed parasites with morphology compatible with T. cruzi. From the serology of 344 random samples of human blood, 1.2% was found positive, 6% showed inconclusive results, and 92.8% were negative. Conclusions: Monte Negro shows low prevalence of human infection by T. cruzi and none active vector transmission; however, preventive and surveying measures, which are not performed until now, shall be taken due to the abundance of vectors infected by trypanosomatidae.
Resumo:
Interest in the epidemiology of emerging diseases of humans and livestock as they relate to wildlife has increased greatly over the past several decades. Many factors, most anthropogenic, have facilitated the emergence of diseases from wildlife. Some livestock diseases have ‘‘spilled over’’ to wildlife and then ‘‘spilled back’’ to livestock. When a population is exposed to an infectious agent, depending on an interaction of factors involving the host, agent, and environment, the population may be resistant to infection or may become a dead-end host, a spillover host, or a maintenance host. Each exposure is unique; the same species of host and agent may respond differently in different situations. Management actions that affect the environment and behavior of a potential host animal may allow the emergence of a new or as yet undetected disease. There are many barriers in preventing, detecting, monitoring and managing wildlife diseases. These may include political and legal hurdles, lack of knowledge about many diseases of wildlife, the absence of basic data on wildlife populations, difficulties with surveillance, and logistical constraints. Increasing interaction between wildlife and humans or domestic animals may lead to disease emergence and require innovative methods and strategies for disease surveillance and management in wildlife.
Resumo:
Brazil is one of the world's largest countries with a rich diversity of wildlife, including resident and migratory wild birds, which may be natural reservoirs of the Newcastle disease virus (NDV). Because Brazil is a major global exporter of chicken meat, the emergence of such a disease may have a huge negative impact not only on the economy due to trade restrictions and embargoes, but also on the quality of life of the population. Samples were collected from 1,022 asymptomatic domestic and wild birds from the Brazilian coast and the Amazon region using tracheal/cloacal swabs and tested by RT-qPCR. The results showed 7 (0.7%) birds were positive for NDV. The positive samples were then isolated in embryonated chicken eggs and their matrix protein genes were partially sequenced, revealing a low-pathogenicity NDV. This study confirms the maintenance of the velogenic-NDV free status of Brazil.
Resumo:
Brazil is one of the world's largest countries with a rich diversity of wildlife, including resident and migratory wild birds, which may be natural reservoirs of the Newcastle disease virus (NDV). Because Brazil is a major global exporter of chicken meat, the emergence of such a disease may have a huge negative impact not only on the economy due to trade restrictions and embargoes, but also on the quality of life of the population. Samples were collected from 1,022 asymptomatic domestic and wild birds from the Brazilian coast and the Amazon region using tracheal/cloacal swabs and tested by RT-qPCR. The results showed 7 (0.7%) birds were positive for NDV. The positive samples were then isolated in embryonated chicken eggs and their matrix protein genes were partially sequenced, revealing a low-pathogenicity NDV. This study confirms the maintenance of the velogenic-NDV free status of Brazil.