997 resultados para Discrete supported Rail
Resumo:
The paper studies the influence of rail weld dip on wheel-rail contact dynamics, with particular reference to freight trains where it is important to increase the operating speed and also the load transported. This has produced a very precise model, albeit simple and cost-effective, which has enabled train-track dynamic interactions over rail welds to be studied to make it possible to quantify the influence on dynamic forces and displacements of the welding geometry; of the position of the weld relative to the sleeper; of the vehicle's speed; and of the axle load and wheelset unsprung mass. It is a vertical model on the spatial domain and is drawn up in a simple fashion from vertical track receptances. For the type of track and vehicle used, the results obtained enable the quantification of increases in wheel-rail contact forces due to the new speed and load conditions.
Resumo:
Trabalho Final de Mestrado para a obtenção do grau de Mestre em Engenharia Civil, na Área de Especialização de Vias de Comunicação e Transportes
Resumo:
The response of high-speed bridges at resonance, particularly under flexural vibrations, constitutes a subject of research for many scientists and engineers at the moment. The topic is of great interest because, as a matter of fact, such kind of behaviour is not unlikely to happen due to the elevated operating speeds of modern rains, which in many cases are equal to or even exceed 300 km/h ( [1,2]). The present paper addresses the subject of the evolution of the wheel-rail contact forces during resonance situations in simply supported bridges. Based on a dimensionless formulation of the equations of motion presented in [4], very similar to the one introduced by Klasztorny and Langer in [3], a parametric study is conducted and the contact forces in realistic situations analysed in detail. The effects of rail and wheel irregularities are not included in the model. The bridge is idealised as an Euler-Bernoulli beam, while the train is simulated by a system consisting of rigid bodies, springs and dampers. The situations such that a severe reduction of the contact force could take place are identified and compared with typical situations in actual bridges. To this end, the simply supported bridge is excited at resonace by means of a theoretical train consisting of 15 equidistant axles. The mechanical characteristics of all axles (unsprung mass, semi-sprung mass, and primary suspension system) are identical. This theoretical train permits the identification of the key parameters having an influence on the wheel-rail contact forces. In addition, a real case of a 17.5 m bridges traversed by the Eurostar train is analysed and checked against the theoretical results. The influence of three fundamental parameters is investigated in great detail: a) the ratio of the fundamental frequency of the bridge and natural frequency of the primary suspension of the vehicle; b) the ratio of the total mass of the bridge and the semi-sprung mass of the vehicle and c) the ratio between the length of the bridge and the characteristic distance between consecutive axles. The main conclusions derived from the investigation are: The wheel-rail contact forces undergo oscillations during the passage of the axles over the bridge. During resonance, these oscillations are more severe for the rear wheels than for the front ones. If denotes the span of a simply supported bridge, and the characteristic distance between consecutive groups of loads, the lower the value of , the greater the oscillations of the contact forces at resonance. For or greater, no likelihood of loss of wheel-rail contact has been detected. The ratio between the frequency of the primary suspension of the vehicle and the fundamental frequency of the bridge is denoted by (frequency ratio), and the ratio of the semi-sprung mass of the vehicle (mass of the bogie) and the total mass of the bridge is denoted by (mass ratio). For any given frequency ratio, the greater the mass ratio, the greater the oscillations of the contact forces at resonance. The oscillations of the contact forces at resonance, and therefore the likelihood of loss of wheel-rail contact, present a minimum for approximately between 0.5 and 1. For lower or higher values of the frequency ratio the oscillations of the contact forces increase. Neglecting the possible effects of torsional vibrations, the metal or composite bridges with a low linear mass have been found to be the ones where the contact forces may suffer the most severe oscillations. If single-track, simply supported, composite or metal bridges were used in high-speed lines, and damping ratios below 1% were expected, the minimum contact forces at resonance could drop to dangerous values. Nevertheless, this kind of structures is very unusual in modern high-speed railway lines.
Resumo:
We investigate the mobility of nonlinear localized modes in a generalized discrete Ginzburg-Landau-type model, describing a one-dimensional waveguide array in an active Kerr medium with intrinsic, saturable gain and damping. It is shown that exponentially localized, traveling discrete dissipative breather-solitons may exist as stable attractors supported only by intrinsic properties of the medium, i.e., in the absence of any external field or symmetry-breaking perturbations. Through an interplay by the gain and damping effects, the moving soliton may overcome the Peierls-Nabarro barrier, present in the corresponding conservative system, by self-induced time-periodic oscillations of its power (norm) and energy (Hamiltonian), yielding exponential decays to zero with different rates in the forward and backward directions. In certain parameter windows, bistability appears between fast modes with small oscillations and slower, large-oscillation modes. The velocities and the oscillation periods are typically related by lattice commensurability and exhibit period-doubling bifurcations to chaotically "walking" modes under parameter variations. If the model is augmented by intersite Kerr nonlinearity, thereby reducing the Peierls-Nabarro barrier of the conservative system, the existence regime for moving solitons increases considerably, and a richer scenario appears including Hopf bifurcations to incommensurately moving solutions and phase-locking intervals. Stable moving breathers also survive in the presence of weak disorder. © 2014 American Physical Society.
Resumo:
An experimental laboratory investigation was carried out to assess the structural adequacy of a disused PHO Class Flat Bottom Rail Wagon (FRW) for a single lane low volume road bridge application as per the design provisions of the Australian Bridge Design Standard AS 5100(2004). The investigation also encompassed a review into the risk associated with the pre-existing damage in wagons incurred during their service life on rail. The main objective of the laboratory testing of the FRW was to physically measure its performance under the same applied traffic loading it would be required to resist as a road bridge deck. In order to achieve this a full width (5.2m) single lane, single span (approximately 10m), simply supported bridge would be required to be constructed and tested in a structural laboratory. However, the available clear spacing between the columns of the loading portal frame encountered within the laboratory was insufficient to accommodate the 5.2m wide bridge deck excluding clearance normally considered necessary in structural testing. Therefore, only half of the full scale bridge deck (single FRW of width 2.6m) was able to be accommodated and tested; with the continuity of the bridge deck in the lateral direction applied as boundary constraints along the full length of the FRW at six selected locations. This represents a novel approach not yet reported in the literature for bridge deck testing to the best of the knowledge of the author. The test was carried out under two loadings provided in AS 5100 (2004) – one stationary W80 wheel load and the second a moving axle load M1600. As the bridge investigated in the study is a single lane single span low volume road bridge, the risk of pre-existing damage and the expected high cycle fatigue failure potential was assessed as being minimal and hence the bridge deck was not tested structurally for fatigue/ fracture. The high axle load requirements have instead been focussed upon the investigation into the serviceability and ultimate limit state requirements. The testing regime adopted however involved extensive recording of strains and deflections at several critical locations of the FRW. Three locations of W80 point load and two locations of the M1600 Axle load were considered for the serviceability testing; the FRW was also tested under the ultimate load dictated by the M1600. The outcomes of the experimental investigation have demonstrated that the FRW is structurally adequate to resist the prescribed traffic loadings outlaid in AS 5100 (2004). As the loading was directly applied on to the FRW, the laboratory testing is assessed as being significantly conservative. The FRW bridge deck in the field would only resist the load transferred by the running platform, where, depending on the design, composite action might exist – thereby the share of the loading which needs to be resisted by the FRW would be smaller than the system tested in the lab. On this basis, a demonstration bridge is under construction at the time of writing this thesis and future research will involve field testing in order to assess its performance.
Resumo:
This paper describes the work being conducted in the baseline rail level crossing project, supported by the Australian rail industry and the Cooperative Research Centre for Rail Innovation. The paper discusses the limitations of near-miss data for analysis obtained using current level crossing occurrence reporting practices. The project is addressing these limitations through the development of a data collection and analysis system with an underlying level crossing accident causation model. An overview of the methodology and improved data recording process are described. The paper concludes with a brief discussion of benefits this project is expected to provide the Australian rail industry.
Resumo:
Insulated rail joints (IRJs) are a primary component of the rail track safety and signalling systems. Rails are supported by two fishplates which are fastened by bolts and nuts and, with the support of sleepers and track ballast, form an integrated assembly. IRJ failure can result from progressive defects, the propagation of which is influenced by residual stresses in the rail. Residual stresses change significantly during service due to the complex deformation and damage effects associated with wheel rolling, sliding and impact. IRJ failures can occur when metal flows over the insulated rail gap (typically 6-8 mm width), breaks the electrically isolated section of track and results in malfunction of the track signalling system. In this investigation, residual stress measurements were obtained from rail-ends which had undergone controlled amounts of surface plastic deformation using a full scale wheel-on-track simulation test rig. Results were compared with those obtained from similar investigations performed on rail ends associated with ex-service IRJs. Residual stresses were measured by neutron diffraction at the Australian Nuclear Science and Technology Organisation (ANSTO). Measurements with constant gauge volume 3x3x3 mm3 were carried in the central vertical plane on 5mm thick sliced rail samples cut by an electric discharge machine (EDM). Stress evolution at the rail ends was found to exhibit characteristics similar to those of the ex-service rails, with a compressive zone of 5mm deep that is counterbalanced by a tension zone beneath, extending to a depth of around 15mm. However, in contrast to the ex-service rails, the type of stress distribution in the test-rig deformed samples was apparently different due to the localization of load under the particular test conditions. In the latter, in contrast with clear stress evolution, there was no obvious evolution of d0. Since d0 reflects rather long-term accumulation of crystal lattice damage and microstructural changes due to service load, the loading history of the test rig samples has not reached the same level as the ex-service rails. It is concluded that the wheel-on-rail simulation rig provides the potential capability for testing the wheel-rail rolling contact conditions in rails, rail ends and insulated rail joints.
Resumo:
In this paper, the linear dynamics and active control of a string travelling with uniform velocity is presented. Discrete elastic supports are introduced along the length of the string. Finite element formulation is adopted to obtain the governing equations of motion. The velocity of translation introduces gyroscopic terms in the system equations. The effect of translation and the discrete elastic supports on the free vibration solution is studied. The solution is utilized in actively controlling the string vibrations due to an initial disturbance. The control, affected in modal space, is optimal with respect to a quadratic performance index. Numerical results are presented to demonstrate the effectiveness of the control strategy in regulating the travelling string vibrations.
Resumo:
In this paper, the influence on corrugation of the most significant track parameters has been examined. After this parametric study, the optimization of the track parameters to minimize the undulatory wear growth has been achieved. Finally, the influence of the dispersion of the track and contact parameters on corrugation growth has been studied. A method has been developed to obtain an optimal solution of the track parameters which minimizes corrugation growth, thus ensuring that this solution remains optimum despite dispersion of track parameters and wheel-rail contact uncertainties. This work is based on the computer application RACING (RAil Corrugation INitiation and Growth) which has been developed by the authors to predict rail corrugation features.
Resumo:
This dissertation is mainly divided into two sub-parts: organometallic and bioinorganic/materials projects. The approach for the projects involves the use of two different multinucleating ligands to synthesize mono- and multinuclear complexes. Chapter 2 describes the synthesis of a multinucleating tris(phosphinoaryl)benzene ligand used to support mono-nickel and palladium complexes. The isolated mononuclear complexes were observed to undergo intramolecular arene C¬–H to C–P functionalization. The transformation was studied by nuclear magnetic resonance spectroscopy and X-ray crystallography, and represents a rare type of C–H functionalization mechanism, facilitated by the interactions of the group 10 metal with the arene π–system.
Chapter 3 describes the construction of multinickel complexes supported by the same triphosphine ligand from Chapter 2. This chapter shows how the central arene in the ligand’s triarylbenzene framework can interact with dinickel and trinickel moieties in various binding modes. X-ray diffraction studies indicated that all compounds display strong metal–arene interactions. A cofacial triangulo nickel(0) complex supported by this ligand scaffold was also isolated and characterized. This chapter demonstrates the use of an arene as versatile ligand design element for small molecular clusters.
Chapter 4 presents the syntheses of a series of discrete mixed transition metal Mn oxido clusters and their characterization. The synthesis of these oxide clusters displaying two types of transition metals were targeted for systematic metal composition-property studies relevant to mixed transition metal oxides employed in electrocatalysis. A series of heterometallic trimanganese tetraoxido cubanes capped with a redox-active metal [MMn3O4] (M = Fe, Co, Ni, Cu) was synthesized starting from a [CaMn3O4] precursor and structurally characterized by X-ray crystallography and anomalous diffraction to conclusively determine that M is incorporated at a single position in the cluster. The electrochemical properties of these complexes were studied via cyclic voltammetry. The redox chemistry of the series of complexes was investigated by the addition of a reductant and oxidant. X-ray absorption and electron paramagnetic resonance spectroscopies were also employed to evaluate the product of the oxidation/reduction reaction to determine the site of electron transfer given the presence of two types of redox-active metals. Additional studies on oxygen atom transfer reactivities of [MMn3O4] and [MMn3O2] series were performed to investigate the effect of the heterometal M in the reaction rates.
Chapter 5 focuses on the use of [CoMn3O4] and [NiMn3O4] cubane complexes discussed in Chapter 4 as precursors to heterogeneous oxygen evolution reaction (OER) electrocatalysts. These well-defined complexes were dropcasted on electrodes with/without heat treatment, and the OER activities of the resulting films were evaluated. Multiple spectroscopic techniques were performed on the surface of the electrocatalysts to gain insight into the structure-function relationships based on the heterometallic composition. Depending on film preparation, the Co-Mn-oxide was found to change metal composition during catalysis, while the Ni-Mn oxide maintained the NiMn3 ratio. These studies represent the use of discrete heterometallic-oxide clusters as precursors for heterogeneous water oxidation catalysts.
Appendix A describes the ongoing effort to synthesize a series of heteromultimetallic [MMn3X] clusters (X = O, S, F). Complexes such as [ZnMn3O], [CoMn3O], [Mn3S], and [Mn4F] have been synthesized and structurally characterized. An amino-bis-oxime ligand (PRABO) has been installed on the [ZnMn3O] cluster. Upon the addition of O2, the desymmetrized [ZnMn3O] cluster only underwent an outer-sphere, one-electron oxidation. Efforts to build and manipulate other heterometallic [MMn3X] clusters are still ongoing, targeting O2 binding and reduction. Appendix B summarizes the multiple synthetic approaches to build a [Co4O4]-cubane complex relevant to heterogeneous OER electrocatalysis. Starting with the tricobalt cluster [LCo3(O2CR)3] and treatment various strong oxidants that can serve as oxygen atom source in the presence Co2+ salt only yielded tricobalt mono–oxo complexes. Appendix C presents the efforts to model the H-cluster framework of [FeFe]-hydrogenase by incorporating a synthetic diiron complex onto a protein-supported or a synthetic ligand-supported [Fe4S4]-cluster. The mutant ferredoxin with a [Fe4S4]-cluster and triscarbene ligand have been characterized by multiple spectroscopic techniques. The reconstruction of an H-cluster mimic has not yet been achieved, due to the difficulty of obtaining crystallographic evidence and the ambiguity of the EPR results.
Resumo:
The response of back-supported buffer plates comprising a solid face sheet and foam core backing impacted by a column of high velocity particles (sand slug) is investigated via a lumped parameter model and coupled discrete/continuum simulations. The buffer plate is either resting on (unattached) or attached to a rigid stationary foundation. The lumped parameter model is used to construct maps of the regimes of behaviour with axes of the ratio of the height of the sand slug to core thickness and the normalised core strength. Four regimes of behaviour are identified based on whether the core compression ends prior to the densification of the sand slug or vice versa. Coupled discrete/continuum simulations are also reported and compared with the lumped parameter model. While the model predicted regimes of behaviour are in excellent agreement with numerical simulations, the lumped parameter model is unable to predict the momentum transmitted to the supports as it neglects the role of elasticity in both the buffer plate and the sand slug. The numerical calculations show that the momentum transfer is minimised for intermediate values of the core strength when the so-called "soft-catch" mechanism is in play. In this regime the bounce-back of the sand slug is minimised which reduces the momentum transfer. However, in this regime, the impulse reduction is small (less than 10% of that transferred to a rigid structure). For high values of the core strength, the response of the buffer plate resembles a rigid plate with nearly no impulse mitigation while at low values of core strength, a slap event occurs when the face sheet impinges against the foundation due to full densification of the foam core. This slap event results in a significant enhancement of the momentum transfer to the foundation. The results demonstrate that appropriately designed buffer plates have potential as impulse mitigators in landmine loading situations. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter epsilon in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers cannot be supported since they are highly unstable.
Resumo:
This work is supported by Brazilian agencies Fapesp, CAPES and CNPq
Resumo:
Until few years ago, 3D modelling was a topic confined into a professional environment. Nowadays technological innovations, the 3D printer among all, have attracted novice users to this application field. This sudden breakthrough was not supported by adequate software solutions. The 3D editing tools currently available do not assist the non-expert user during the various stages of generation, interaction and manipulation of 3D virtual models. This is mainly due to the current paradigm that is largely supported by two-dimensional input/output devices and strongly affected by obvious geometrical constraints. We have identified three main phases that characterize the creation and management of 3D virtual models. We investigated these directions evaluating and simplifying the classic editing techniques in order to propose more natural and intuitive tools in a pure 3D modelling environment. In particular, we focused on freehand sketch-based modelling to create 3D virtual models, interaction and navigation in a 3D modelling environment and advanced editing tools for free-form deformation and objects composition. To pursuing these goals we wondered how new gesture-based interaction technologies can be successfully employed in a 3D modelling environments, how we could improve the depth perception and the interaction in 3D environments and which operations could be developed to simplify the classical virtual models editing paradigm. Our main aims were to propose a set of solutions with which a common user can realize an idea in a 3D virtual model, drawing in the air just as he would on paper. Moreover, we tried to use gestures and mid-air movements to explore and interact in 3D virtual environment, and we studied simple and effective 3D form transformations. The work was carried out adopting the discrete representation of the models, thanks to its intuitiveness, but especially because it is full of open challenges.
Resumo:
Intestinal dendritic cells (DCs) are believed to sample and present commensal bacteria to the gut-associated immune system to maintain immune homeostasis. How antigen sampling pathways handle intestinal pathogens remains elusive. We present a murine colitogenic Salmonella infection model that is highly dependent on DCs. Conditional DC depletion experiments revealed that intestinal virulence of S. Typhimurium SL1344 DeltainvG mutant lacking a functional type 3 secretion system-1 (DeltainvG)critically required DCs for invasion across the epithelium. The DC-dependency was limited to the early phase of infection when bacteria colocalized with CD11c(+)CX3CR1(+) mucosal DCs. At later stages, the bacteria became associated with other (CD11c(-)CX3CR1(-)) lamina propria cells, DC depletion no longer attenuated the pathology, and a MyD88-dependent mucosal inflammation was initiated. Using bone marrow chimeric mice, we showed that the MyD88 signaling within hematopoietic cells, which are distinct from DCs, was required and sufficient for induction of the colitis. Moreover, MyD88-deficient DCs supported transepithelial uptake of the bacteria and the induction of MyD88-dependent colitis. These results establish that pathogen sampling by DCs is a discrete, and MyD88-independent, step during the initiation of a mucosal innate immune response to bacterial infection in vivo.