996 resultados para Discrete associated kernel
Resumo:
Asymmetric discrete triangular distributions are introduced in order to extend the symmetric ones serving for discrete associated kernels in the nonparametric estimation for discrete functions. The extension from one to two orders around the mode provides a large family of discrete distributions having a finite support. Establishing a bridge between Dirac and discrete uniform distributions, some different shapes are also obtained and their properties are investigated. In particular, the mean and variance are pointed out. Applications to discrete kernel estimators are given with a solution to a boundary bias problem. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Using the classical Parzen window (PW) estimate as the target function, the sparse kernel density estimator is constructed in a forward-constrained regression (FCR) manner. The proposed algorithm selects significant kernels one at a time, while the leave-one-out (LOO) test score is minimized subject to a simple positivity constraint in each forward stage. The model parameter estimation in each forward stage is simply the solution of jackknife parameter estimator for a single parameter, subject to the same positivity constraint check. For each selected kernels, the associated kernel width is updated via the Gauss-Newton method with the model parameter estimate fixed. The proposed approach is simple to implement and the associated computational cost is very low. Numerical examples are employed to demonstrate the efficacy of the proposed approach.
Resumo:
An efficient data based-modeling algorithm for nonlinear system identification is introduced for radial basis function (RBF) neural networks with the aim of maximizing generalization capability based on the concept of leave-one-out (LOO) cross validation. Each of the RBF kernels has its own kernel width parameter and the basic idea is to optimize the multiple pairs of regularization parameters and kernel widths, each of which is associated with a kernel, one at a time within the orthogonal forward regression (OFR) procedure. Thus, each OFR step consists of one model term selection based on the LOO mean square error (LOOMSE), followed by the optimization of the associated kernel width and regularization parameter, also based on the LOOMSE. Since like our previous state-of-the-art local regularization assisted orthogonal least squares (LROLS) algorithm, the same LOOMSE is adopted for model selection, our proposed new OFR algorithm is also capable of producing a very sparse RBF model with excellent generalization performance. Unlike our previous LROLS algorithm which requires an additional iterative loop to optimize the regularization parameters as well as an additional procedure to optimize the kernel width, the proposed new OFR algorithm optimizes both the kernel widths and regularization parameters within the single OFR procedure, and consequently the required computational complexity is dramatically reduced. Nonlinear system identification examples are included to demonstrate the effectiveness of this new approach in comparison to the well-known approaches of support vector machine and least absolute shrinkage and selection operator as well as the LROLS algorithm.
Resumo:
The FANOVA (or “Sobol’-Hoeffding”) decomposition of multivariate functions has been used for high-dimensional model representation and global sensitivity analysis. When the objective function f has no simple analytic form and is costly to evaluate, computing FANOVA terms may be unaffordable due to numerical integration costs. Several approximate approaches relying on Gaussian random field (GRF) models have been proposed to alleviate these costs, where f is substituted by a (kriging) predictor or by conditional simulations. Here we focus on FANOVA decompositions of GRF sample paths, and we notably introduce an associated kernel decomposition into 4 d 4d terms called KANOVA. An interpretation in terms of tensor product projections is obtained, and it is shown that projected kernels control both the sparsity of GRF sample paths and the dependence structure between FANOVA effects. Applications on simulated data show the relevance of the approach for designing new classes of covariance kernels dedicated to high-dimensional kriging.
Resumo:
Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we consider the existence of the maximal and mean square stabilizing solutions for a set of generalized coupled algebraic Riccati equations (GCARE for short) associated to the infinite-horizon stochastic optimal control problem of discrete-time Markov jump with multiplicative noise linear systems. The weighting matrices of the state and control for the quadratic part are allowed to be indefinite. We present a sufficient condition, based only on some positive semi-definite and kernel restrictions on some matrices, under which there exists the maximal solution and a necessary and sufficient condition under which there exists the mean square stabilizing solution fir the GCARE. We also present a solution for the discounted and long run average cost problems when the performance criterion is assumed be composed by a linear combination of an indefinite quadratic part and a linear part in the state and control variables. The paper is concluded with a numerical example for pension fund with regime switching.
Resumo:
Pheochromocytomas are tumors of the adrenal medulla originating in the chromaffin cells derived from the neural crest. Ten % of these tumors are associated with the familial cancer syndromes multiple endocrine neoplasia type 2, von Hippel-Lindau disease (VHL), and rarely, neurofibromatosis type 1, in which germ-line mutations have been identified in RET, VHL, and NF1, respectively. In both the sporadic and familial forms of pheochromocytoma, allelic loss at 1p, 3p, 17p, and 22q has been reported, yet the molecular pathogenesis of these tumors is largely unknown. Allelic loss at chromosome 1p has also been reported in other endocrine tumors, such as medullary thyroid cancer and tumors of the parathyroid gland, as well as in tumors of neural crest origin including neuroblastoma and malignant melanoma, In this study, we performed fine structure mapping of deletions at chromosome 1p in familial and sporadic pheochromocytomas to identify discrete regions likely housing tumor suppressor genes involved in the development of these tumors. Ten microsatellite markers spanning a region of similar to 70 cM (Ipter to 1p34.3) were used to screen 20 pheochromocytomas from 19 unrelated patients for loss of heterozygosity (LOH). LOH was detected at five or more loci in 8 of 13 (61%)sporadic samples and at five or more loci in four of five (80%) tumor samples from patients with multiple endocrine neoplasia type 2. No LOH at 1p was detected in pheochromocytomas from two VHL patients, Analysis of the combined sporadic and familial tumor data suggested three possible regions of common somatic loss, designated as PCI (D1S243 to D1S244), PC2 (D1S228 to D1S507), and PC3 (D1S507 toward the centromere). We propose that chromosome Ip may be the site of at least three putative tumor suppressor loci involved in the tumorigenesis of pheochromocytomas. At least one of these loci, PC2 spanning an interval of <3.8 cM, is Likely to have a broader role in the development of endocrine malignancies.
Resumo:
Dichotomic maps are considered by means of the stability and asymptotic stability of the null solution of a class of differential equations with argument [t] via associated discrete equations, where [.] designates the greatest integer function.
Resumo:
Dichotomic maps are considered by means of the stability of the null solution of a class of differential equations with piecewise constant argument via associated discrete equations. Copyright © 2008 Watam Press.
Resumo:
We analyze reproducing kernel Hilbert spaces of positive definite kernels on a topological space X being either first countable or locally compact. The results include versions of Mercer's theorem and theorems on the embedding of these spaces into spaces of continuous and square integrable functions.
Resumo:
Huntington disease stems from a mutation of the protein huntingtin and is characterized by selective loss of discrete neuronal populations in the brain. Despite a massive loss of neurons in the corpus striatum, NO-generating neurons are intact. We recently identified a brain-specific protein that associates with huntingtin and is designated huntingtin-associated protein (HAP1). We now describe selective neuronal localizations of HAP1. In situ hybridization studies reveal a resemblance of HAP1 and neuronal nitric oxide synthase (nNOS) mRNA localizations with dramatic enrichment of both in the pedunculopontine nuclei, the accessory olfactory bulb, and the supraoptic nucleus of the hypothalamus. Both nNOS and HAP1 are enriched in subcellular fractions containing synaptic vesicles. Immunocytochemical studies indicate colocalizations of HAP1 and nNOS in some neurons. The possible relationship of HAP1 and nNOS in the brain is reminiscent of the relationship of dystrophin and nNOS in skeletal muscle and suggests a role of NO in Huntington disease, analogous to its postulated role in Duchenne muscular dystrophy.
Resumo:
In this paper, we propose a new edge-based matching kernel for graphs by using discrete-time quantum walks. To this end, we commence by transforming a graph into a directed line graph. The reasons of using the line graph structure are twofold. First, for a graph, its directed line graph is a dual representation and each vertex of the line graph represents a corresponding edge in the original graph. Second, we show that the discrete-time quantum walk can be seen as a walk on the line graph and the state space of the walk is the vertex set of the line graph, i.e., the state space of the walk is the edges of the original graph. As a result, the directed line graph provides an elegant way of developing new edge-based matching kernel based on discrete-time quantum walks. For a pair of graphs, we compute the h-layer depth-based representation for each vertex of their directed line graphs by computing entropic signatures (computed from discrete-time quantum walks on the line graphs) on the family of K-layer expansion subgraphs rooted at the vertex, i.e., we compute the depth-based representations for edges of the original graphs through their directed line graphs. Based on the new representations, we define an edge-based matching method for the pair of graphs by aligning the h-layer depth-based representations computed through the directed line graphs. The new edge-based matching kernel is thus computed by counting the number of matched vertices identified by the matching method on the directed line graphs. Experiments on standard graph datasets demonstrate the effectiveness of our new kernel.
Resumo:
In this paper, we develop a new graph kernel by using the quantum Jensen-Shannon divergence and the discrete-time quantum walk. To this end, we commence by performing a discrete-time quantum walk to compute a density matrix over each graph being compared. For a pair of graphs, we compare the mixed quantum states represented by their density matrices using the quantum Jensen-Shannon divergence. With the density matrices for a pair of graphs to hand, the quantum graph kernel between the pair of graphs is defined by exponentiating the negative quantum Jensen-Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets, and demonstrate the effectiveness of the new kernel.
Resumo:
This paper considers the optimal linear estimates recursion problem for discrete-time linear systems in its more general formulation. The system is allowed to be in descriptor form, rectangular, time-variant, and with the dynamical and measurement noises correlated. We propose a new expression for the filter recursive equations which presents an interesting simple and symmetric structure. Convergence of the associated Riccati recursion and stability properties of the steady-state filter are provided. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we obtain the linear minimum mean square estimator (LMMSE) for discrete-time linear systems subject to state and measurement multiplicative noises and Markov jumps on the parameters. It is assumed that the Markov chain is not available. By using geometric arguments we obtain a Kalman type filter conveniently implementable in a recurrence form. The stationary case is also studied and a proof for the convergence of the error covariance matrix of the LMMSE to a stationary value under the assumption of mean square stability of the system and ergodicity of the associated Markov chain is obtained. It is shown that there exists a unique positive semi-definite solution for the stationary Riccati-like filter equation and, moreover, this solution is the limit of the error covariance matrix of the LMMSE. The advantage of this scheme is that it is very easy to implement and all calculations can be performed offline. (c) 2011 Elsevier Ltd. All rights reserved.