893 resultados para Discrete Cosine Transform (DCT)
Digital signal processing and digital system design using discrete cosine transform [student course]
Resumo:
The discrete cosine transform (DCT) is an important functional block for image processing applications. The implementation of a DCT has been viewed as a specialized research task. We apply a micro-architecture based methodology to the hardware implementation of an efficient DCT algorithm in a digital design course. Several circuit optimization and design space exploration techniques at the register-transfer and logic levels are introduced in class for generating the final design. The students not only learn how the algorithm can be implemented, but also receive insights about how other signal processing algorithms can be translated into a hardware implementation. Since signal processing has very broad applications, the study and implementation of an extensively used signal processing algorithm in a digital design course significantly enhances the learning experience in both digital signal processing and digital design areas for the students.
Resumo:
Clenshaw’s recurrenee formula is used to derive recursive algorithms for the discrete cosine transform @CT) and the inverse discrete cosine transform (IDCT). The recursive DCT algorithm presented here requires one fewer delay element per coefficient and one fewer multiply operation per coeflident compared with two recently proposed methods. Clenshaw’s recurrence formula provides a unified development for the recursive DCT and IDCT algorithms. The M v e al gorithms apply to arbitrary lengtb algorithms and are appropriate for VLSI implementation.
Resumo:
A set of DCT domain properties for shifting and scaling by real amounts, and taking linear operations such as differentiation is described. The DCT coefficients of a sampled signal are subjected to a linear transform, which returns the DCT coefficients of the shifted, scaled and/or differentiated signal. The properties are derived by considering the inverse discrete transform as a cosine series expansion of the original continuous signal, assuming sampling in accordance with the Nyquist criterion. This approach can be applied in the signal domain, to give, for example, DCT based interpolation or derivatives. The same approach can be taken in decoding from the DCT to give, for example, derivatives in the signal domain. The techniques may prove useful in compressed domain processing applications, and are interesting because they allow operations from the continuous domain such as differentiation to be implemented in the discrete domain. An image matching algorithm illustrates the use of the properties, with improvements in computation time and matching quality.
Resumo:
In this correspondence, the conditions to use any kind of discrete cosine transform (DCT) for multicarrier data transmission are derived. The symmetric convolution-multiplication property of each DCT implies that when symmetric convolution is performed in the time domain, an element-by-element multiplication is performed in the corresponding discrete trigonometric domain. Therefore, appending symmetric redun-dancy (as prefix and suffix) into each data symbol to be transmitted, and also enforcing symmetry for the equivalent channel impulse response, the linear convolution performed in the transmission channel becomes a symmetric convolution in those samples of interest. Furthermore, the channel equalization can be carried out by means of a bank of scalars in the corresponding discrete cosine transform domain. The expressions for obtaining the value of each scalar corresponding to these one-tap per subcarrier equalizers are presented. This study is completed with several computer simulations in mobile broadband wireless communication scenarios, considering the presence of carrier frequency offset (CFO). The obtained results indicate that the proposed systems outperform the standardized ones based on the DFT.
Resumo:
The problem of channel estimation for multicarrier communications is addressed. We focus on systems employing the Discrete Cosine Transform Type-I (DCT1) even at both the transmitter and the receiver, presenting an algorithm which achieves an accurate estimation of symmetric channel filters using only a small number of training symbols. The solution is obtained by using either matrix inversion or compressed sensing algorithms. We provide the theoretical results which guarantee the validity of the proposed technique for the DCT1. Numerical simulations illustrate the good behaviour of the proposed algorithm.
Resumo:
We extend our previous work into error-free representations of transform basis functions by presenting a novel error-free encoding scheme for the fast implementation of a Linzer-Feig Fast Cosine Transform (FCT) and its inverse. We discuss an 8x8 L-F scaled Discrete Cosine Transform where the architecture uses a new algebraic integer quantization of the 1-D radix-8 DCT that allows the separable computation of a 2-D DCT without any intermediate number representation conversions. The resulting architecture is very regular and reduces latency by 50% compared to a previous error-free design, with virtually the same hardware cost.
Resumo:
With the increase of use of digital media the need for the methods of multimedia protection becomes extremely important. The number of the solutions to the problem from encryption to watermarking is large and is growing every year. In this work digital image watermarking is considered, specifically a novel method of digital watermarking of color and spectral images. An overview of existing methods watermarking of color and grayscale images is given in the paper. Methods using independent component analysis (ICA) for detection and the ones using discrete wavelet transform (DWT) and discrete cosine transform (DCT) are considered in more detail. A novel method of watermarking proposed in this paper allows embedding of a color or spectral watermark image into color or spectral image consequently and successful extraction of the watermark out of the resultant watermarked image. A number of experiments have been performed on the quality of extraction depending on the parameters of the embedding procedure. Another set of experiments included the test of the robustness of the algorithm proposed. Three techniques have been chosen for that purpose: median filter, low-pass filter (LPF) and discrete cosine transform (DCT), which are a part of a widely known StirMark - Image Watermarking Robustness Test. The study shows that the proposed watermarking technique is fragile, i.e. watermark is altered by simple image processing operations. Moreover, we have found that the contents of the image to be watermarked do not affect the quality of the extraction. Mixing coefficients, that determine the amount of the key and watermark image in the result, should not exceed 1% of the original. The algorithm proposed has proven to be successful in the task of watermark embedding and extraction.
Resumo:
Parkinson's disease (PD) is a degenerative illness whose cardinal symptoms include rigidity, tremor, and slowness of movement. In addition to its widely recognized effects PD can have a profound effect on speech and voice.The speech symptoms most commonly demonstrated by patients with PD are reduced vocal loudness, monopitch, disruptions of voice quality, and abnormally fast rate of speech. This cluster of speech symptoms is often termed Hypokinetic Dysarthria.The disease can be difficult to diagnose accurately, especially in its early stages, due to this reason, automatic techniques based on Artificial Intelligence should increase the diagnosing accuracy and to help the doctors make better decisions. The aim of the thesis work is to predict the PD based on the audio files collected from various patients.Audio files are preprocessed in order to attain the features.The preprocessed data contains 23 attributes and 195 instances. On an average there are six voice recordings per person, By using data compression technique such as Discrete Cosine Transform (DCT) number of instances can be minimized, after data compression, attribute selection is done using several WEKA build in methods such as ChiSquared, GainRatio, Infogain after identifying the important attributes, we evaluate attributes one by one by using stepwise regression.Based on the selected attributes we process in WEKA by using cost sensitive classifier with various algorithms like MultiPass LVQ, Logistic Model Tree(LMT), K-Star.The classified results shows on an average 80%.By using this features 95% approximate classification of PD is acheived.This shows that using the audio dataset, PD could be predicted with a higher level of accuracy.
Resumo:
Image compress consists in represent by small amount of data, without loss a visual quality. Data compression is important when large images are used, for example satellite image. Full color digital images typically use 24 bits to specify the color of each pixel of the Images with 8 bits for each of the primary components, red, green and blue (RGB). Compress an image with three or more bands (multispectral) is fundamental to reduce the transmission time, process time and record time. Because many applications need images, that compression image data is important: medical image, satellite image, sensor etc. In this work a new compression color images method is proposed. This method is based in measure of information of each band. This technique is called by Self-Adaptive Compression (S.A.C.) and each band of image is compressed with a different threshold, for preserve information with better result. SAC do a large compression in large redundancy bands, that is, lower information and soft compression to bands with bigger amount of information. Two image transforms are used in this technique: Discrete Cosine Transform (DCT) and Principal Component Analysis (PCA). Primary step is convert data to new bands without relationship, with PCA. Later Apply DCT in each band. Data Loss is doing when a threshold discarding any coefficients. This threshold is calculated with two elements: PCA result and a parameter user. Parameters user define a compression tax. The system produce three different thresholds, one to each band of image, that is proportional of amount information. For image reconstruction is realized DCT and PCA inverse. SAC was compared with JPEG (Joint Photographic Experts Group) standard and YIQ compression and better results are obtain, in MSE (Mean Square Root). Tests shown that SAC has better quality in hard compressions. With two advantages: (a) like is adaptive is sensible to image type, that is, presents good results to divers images kinds (synthetic, landscapes, people etc., and, (b) it need only one parameters user, that is, just letter human intervention is required
Resumo:
Apresenta-se nesta dissertação a proposta de um algoritmo supervisionado de classificação de imagens de sensoreamento remoto, composto de três etapas: remoção ou suavização de nuvens, segmentação e classificação.O método de remoção de nuvens usa filtragem homomórfica para tratar as obstruções causadas pela presença de nuvens suaves e o método Inpainting para remover ou suavizar a preseça de sombras e nuvens densas. Para as etapas de segmentação e classificação é proposto um método baseado na energia AC dos coeficientes da Transformada Cosseno Discreta (DCT). O modo de classificação adotado é do tipo supervisionado. Para avaliar o algioritmo foi usado um banco de 14 imagens captadas por vários sensores, das quais 12 possuem algum tipo de obstrução. Para avaliar a etapa de remoção ou suavização de nuvens e sombras são usados a razão sinal-ruído de pico (PSNR) e o coeficiente Kappa. Nessa fase, vários filtros passa-altas foram comparados para a escolha do mais eficiente. A segmentação das imagens é avaliada pelo método da coincidência entre bordas (EBC) e a classificação é avaliada pela medida da entropia relativa e do erro médio quadrático (MSE). Tão importante quanto as métricas, as imagens resultantes são apresentadas de forma a permitir a avaliação subjetiva por comparação visual. Os resultados mostram a eficiência do algoritmo proposto, principalmente quando comparado ao software Spring, distribuído pelo Instituto Nacional de Pesquisas Espaciais (INPE).
Resumo:
Os principais objetivos deste trabalho são propor um algoritmo eficiente e o mais automático possível para estimar o que está coberto por regiões de nuvens e sombras em imagens de satélite; e um índice de confiabilidade, que seja aplicado previamente à imagem, visando medir a viabilidade da estimação das regiões cobertas pelos componentes atmosféricos usando tal algoritmo. A motivação vem dos problemas causados por esses elementos, entre eles: dificultam a identificação de objetos de imagem, prejudicam o monitoramento urbano e ambiental, e desfavorecem etapas cruciais do processamento digital de imagens para extrair informações ao usuário, como segmentação e classificação. Através de uma abordagem híbrida, é proposto um método para decompor regiões usando um filtro passa-baixas não-linear de mediana, a fim de mapear as regiões de estrutura (homogêneas), como vegetação, e de textura (heterogêneas), como áreas urbanas, na imagem. Nessas áreas, foram aplicados os métodos de restauração Inpainting por suavização baseado em Transformada Cosseno Discreta (DCT), e Síntese de Textura baseada em modelos, respectivamente. É importante salientar que as técnicas foram modificadas para serem capazes de trabalhar com imagens de características peculiares que são obtidas por meio de sensores de satélite, como por exemplo, as grandes dimensões e a alta variação espectral. Já o índice de confiabilidade, tem como objetivo analisar a imagem que contém as interferências atmosféricas e daí estimar o quão confiável será a redefinição com base no percentual de cobertura de nuvens sobre as regiões de textura e estrutura. Tal índice é composto pela combinação do resultado de algoritmos supervisionados e não-supervisionados envolvendo 3 métricas: Exatidão Global Média (EGM), Medida De Similaridade Estrutural (SSIM) e Confiança Média Dos Pixels (CM). Finalmente, verificou-se a eficácia destas metodologias através de uma avaliação quantitativa (proporcionada pelo índice) e qualitativa (pelas imagens resultantes do processamento), mostrando ser possível a aplicação das técnicas para solucionar os problemas que motivaram a realização deste trabalho.
Resumo:
The performance of the parallel vector implementation of the one- and two-dimensional orthogonal transforms is evaluated. The orthogonal transforms are computed using actual or modified fast Fourier transform (FFT) kernels. The factors considered in comparing the speed-up of these vectorized digital signal processing algorithms are discussed and it is shown that the traditional way of comparing th execution speed of digital signal processing algorithms by the ratios of the number of multiplications and additions is no longer effective for vector implementation; the structure of the algorithm must also be considered as a factor when comparing the execution speed of vectorized digital signal processing algorithms. Simulation results on the Cray X/MP with the following orthogonal transforms are presented: discrete Fourier transform (DFT), discrete cosine transform (DCT), discrete sine transform (DST), discrete Hartley transform (DHT), discrete Walsh transform (DWHT), and discrete Hadamard transform (DHDT). A comparison between the DHT and the fast Hartley transform is also included.(34 refs)
Resumo:
When stereo images are captured under less than ideal conditions, there may be inconsistencies between the two images in brightness, contrast, blurring, etc. When stereo matching is performed between the images, these variations can greatly reduce the quality of the resulting depth map. In this paper we propose a method for correcting sharpness variations in stereo image pairs which is performed as a pre-processing step to stereo matching. Our method is based on scaling the 2D discrete cosine transform (DCT) coefficients of both images so that the two images have the same amount of energy in each of a set of frequency bands. Experiments show that applying the proposed correction method can greatly improve the disparity map quality when one image in a stereo pair is more blurred than the other.
Resumo:
The growth and advances made in computer technology have led to the present interest in picture processing techniques. When considering image data compression the tendency is towards trans-form source coding of the image data. This method of source coding has reached a stage where very high reductions in the number of bits representing the data can be made while still preserving image fidelity. The point has thus been reached where channel errors need to be considered, as these will be inherent in any image comnunication system. The thesis first describes general source coding of images with the emphasis almost totally on transform coding. The transform technique adopted is the Discrete Cosine Transform (DCT) which becomes common to both transform coders. Hereafter the techniques of source coding differ substantially i.e. one technique involves zonal coding, the other involves threshold coding. Having outlined the theory and methods of implementation of the two source coders, their performances are then assessed first in the absence, and then in the presence, of channel errors. These tests provide a foundation on which to base methods of protection against channel errors. Six different protection schemes are then proposed. Results obtained, from each particular, combined, source and channel error protection scheme, which are described in full are then presented. Comparisons are made between each scheme and indicate the best one to use given a particular channel error rate.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações