858 resultados para Discovery platforms


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the discovery of RNAi, its mechanism in plants and animals has been intensively studied, widely exploited as a research tool, and used for a number of potential commercial applications. In this article, we discuss the platforms for delivering RNAi in plants. We provide a brief background to these platforms and concentrate on discussing the more recent advances, comparing the RNAi technologies used in plants with those used in animals, and trying to predict the ways in which RNAi technologies may further develop. © 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the rheological/mucoadhesive properties of poly (acrylic acid) PAA organogels as platforms for drug delivery to the oral cavity. Organogels were prepared using PAA (3%, 5%, 10% w/w) dissolved in ethylene glycol (EG), propylene glycol (PG), 1,3-propylene glycol (1,3-PG), 1,5-propanediol (1,5-PD), polyethylene glycol 400 (PEG 400), or glycerol. All organogels exhibited pseudoplastic flow. The increase in storage (G') and loss (G '') moduli of organogels as a function of frequency was minimal, G '' was greater than G '' (at all frequencies), and the loss tangent <1, indicative of gel behavior. Organogels prepared using EG, PG, and 1,3-propanediol (1,3-PD) exhibited similar flow/viscoelastic properties. Enhanced rheological structuring was associated with organogels prepared using glycerol (in particular) and PEG 400 due to their interaction with adjacent carboxylic acid groups on each chain and on adjacent chains. All organogels (with the exception of 1,5-PD) exhibited greater network structure than aqueous PAA gels. Organogel mucoadhesion increased with polymer concentration. Greatest mucoadhesion was associated with glycerol-based formulations, whereas aqueous PAA gels exhibited the lowest mucoadhesion. The enhanced network structure and the excellent mucoadhesive properties of these organogels, both of which may be engineered through choice of polymer concentration/solvent type, may be clinically useful for the delivery of drugs to the oral cavity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: To date, there are no clinically reliable predictive markers of response to the current treatment regimens for advanced colorectal cancer. The aim of the current study was to compare and assess the power of transcriptional profiling using a generic microarray and a disease-specific transcriptome-based microarray. We also examined the biological and clinical relevance of the disease-specific transcriptome.

METHODS: DNA microarray profiling was carried out on isogenic sensitive and 5-FU-resistant HCT116 colorectal cancer cell lines using the Affymetrix HG-U133 Plus2.0 array and the Almac Diagnostics Colorectal cancer disease specific Research tool. In addition, DNA microarray profiling was also carried out on pre-treatment metastatic colorectal cancer biopsies using the colorectal cancer disease specific Research tool. The two microarray platforms were compared based on detection of probesets and biological information.

RESULTS: The results demonstrated that the disease-specific transcriptome-based microarray was able to out-perform the generic genomic-based microarray on a number of levels including detection of transcripts and pathway analysis. In addition, the disease-specific microarray contains a high percentage of antisense transcripts and further analysis demonstrated that a number of these exist in sense:antisense pairs. Comparison between cell line models and metastatic CRC patient biopsies further demonstrated that a number of the identified sense:antisense pairs were also detected in CRC patient biopsies, suggesting potential clinical relevance.

CONCLUSIONS: Analysis from our in vitro and clinical experiments has demonstrated that many transcripts exist in sense:antisense pairs including IGF2BP2, which may have a direct regulatory function in the context of colorectal cancer. While the functional relevance of the antisense transcripts has been established by many studies, their functional role is currently unclear; however, the numbers that have been detected by the disease-specific microarray would suggest that they may be important regulatory transcripts. This study has demonstrated the power of a disease-specific transcriptome-based approach and highlighted the potential novel biologically and clinically relevant information that is gained when using such a methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current clinical, laboratory or radiological parameters cannot accurately diagnose or predict disease outcomes in a range of autoimmune disorders. Biomarkers which can diagnose at an earlier time point, predict outcome or help guide therapeutic strategies in autoimmune diseases could improve clinical management of this broad group of debilitating disorders. Additionally, there is a growing need for a deeper understanding of multi-factorial autoimmune disorders. Proteomic platforms offering a multiplex approach are more likely to reflect the complexity of autoimmune disease processes. Findings from proteomic based studies of three distinct autoimmune diseases are presented and strategies compared. It is the authors' view that such approaches are likely to be fruitful in the movement of autoimmune disease treatment away from reactive decisions and towards a preventative stand point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inter-dealer trading in US Treasury securities is almost equally divided between two electronic trading platforms that have only slight differences in terms of their relative liquidity and transparency. BrokerTec is more active in the trading of 2-, 5-, and 10-year T-notes while eSpeed has more active trading in the 30-year bond. Over the period studied, eSpeed provides a more pre-trade transparent platform than BrokerTec. We examine the contribution to ‘price discovery’ of activity in the two platforms using high frequency data. We find that price discovery does not derive equally from the two platforms and that the shares vary across term to maturity. This can be traced to differential trading activities and transparency of the two platforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing accessibility to genomic resources using next-generation sequencing (NGS) technologies has revolutionized the application of molecular genetic tools to ecology and evolutionary studies in non-model organisms. Here we present the case study of the European hake (Merluccius merluccius), one of the most important demersal resources of European fisheries. Two sequencing platforms, the Roche 454 FLX (454) and the Illumina Genome Analyzer (GAII), were used for Single Nucleotide Polymorphisms (SNPs) discovery in the hake muscle transcriptome. De novo transcriptome assembly into unique contigs, annotation, and in silico SNP detection were carried out in parallel for 454 and GAII sequence data. High-throughput genotyping using the Illumina GoldenGate assay was performed for validating 1,536 putative SNPs. Validation results were analysed to compare the performances of 454 and GAII methods and to evaluate the role of several variables (e.g. sequencing depth, intron-exon structure, sequence quality and annotation). Despite well-known differences in sequence length and throughput, the two approaches showed similar assay conversion rates (approximately 43%) and percentages of polymorphic loci (67.5% and 63.3% for GAII and 454, respectively). Both NGS platforms therefore demonstrated to be suitable for large scale identification of SNPs in transcribed regions of non-model species, although the lack of a reference genome profoundly affects the genotyping success rate. The overall efficiency, however, can be improved using strict quality and filtering criteria for SNP selection (sequence quality, intron-exon structure, target region score).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent explosion of genetic and clinical data generated from tumor genome analysis presents an unparalleled opportunity to enhance our understanding of cancer, but this opportunity is compromised by the reluctance of many in the scientific community to share datasets and the lack of interoperability between different data platforms. The Global Alliance for Genomics and Health is addressing these barriers and challenges through a cooperative framework that encourages "team science" and responsible data sharing, complemented by the development of a series of application program interfaces that link different data platforms, thus breaking down traditional silos and liberating the data to enable new discoveries and ultimately benefit patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wednesday 23rd April 2014 Speaker(s): Willi Hasselbring Organiser: Leslie Carr Time: 23/04/2014 14:00-15:00 Location: B32/3077 File size: 802Mb Abstract The internal behavior of large-scale software systems cannot be determined on the basis of static (e.g., source code) analysis alone. Kieker provides complementary dynamic analysis capabilities, i.e., monitoring/profiling and analyzing a software system's runtime behavior. Application Performance Monitoring is concerned with continuously observing a software system's performance-specific runtime behavior, including analyses like assessing service level compliance or detecting and diagnosing performance problems. Architecture Discovery is concerned with extracting architectural information from an existing software system, including both structural and behavioral aspects like identifying architectural entities (e.g., components and classes) and their interactions (e.g., local or remote procedure calls). In addition to the Architecture Discovery of Java systems, Kieker supports Architecture Discovery for other platforms, including legacy systems, for instance, inplemented in C#, C++, Visual Basic 6, COBOL or Perl. Thanks to Kieker's extensible architecture it is easy to implement and use custom extensions and plugins. Kieker was designed for continuous monitoring in production systems inducing only a very low overhead, which has been evaluated in extensive benchmark experiments. Please, refer to http://kieker-monitoring.net/ for more information.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conferencia por invitación, impartida el 31 d mayo de 2014 en el Workshop on Language Technology Service Platforms: Synergies, Standards, Sharing at LREC2014

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geographic knowledge discovery (GKD) is the process of extracting information and knowledge from massive georeferenced databases. Usually the process is accomplished by two different systems, the Geographic Information Systems (GIS) and the data mining engines. However, the development of those systems is a complex task due to it does not follow a systematic, integrated and standard methodology. To overcome these pitfalls, in this paper, we propose a modeling framework that addresses the development of the different parts of a multilayer GKD process. The main advantages of our framework are that: (i) it reduces the design effort, (ii) it improves quality systems obtained, (iii) it is independent of platforms, (iv) it facilitates the use of data mining techniques on geo-referenced data, and finally, (v) it ameliorates the communication between different users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Membrane proteins, which reside in the membranes of cells, play a critical role in many important biological processes including cellular signaling, immune response, and material and energy transduction. Because of their key role in maintaining the environment within cells and facilitating intercellular interactions, understanding the function of these proteins is of tremendous medical and biochemical significance. Indeed, the malfunction of membrane proteins has been linked to numerous diseases including diabetes, cirrhosis of the liver, cystic fibrosis, cancer, Alzheimer's disease, hypertension, epilepsy, cataracts, tubulopathy, leukodystrophy, Leigh syndrome, anemia, sensorineural deafness, and hypertrophic cardiomyopathy.1-3 However, the structure of many of these proteins and the changes in their structure that lead to disease-related malfunctions are not well understood. Additionally, at least 60% of the pharmaceuticals currently available are thought to target membrane proteins, despite the fact that their exact mode of operation is not known.4-6 Developing a detailed understanding of the function of a protein is achieved by coupling biochemical experiments with knowledge of the structure of the protein. Currently the most common method for obtaining three-dimensional structure information is X-ray crystallography. However, no a priori methods are currently available to predict crystallization conditions for a given protein.7-14 This limitation is currently overcome by screening a large number of possible combinations of precipitants, buffer, salt, and pH conditions to identify conditions that are conducive to crystal nucleation and growth.7,9,11,15-24 Unfortunately, these screening efforts are often limited by difficulties associated with quantity and purity of available protein samples. While the two most significant bottlenecks for protein structure determination in general are the (i) obtaining sufficient quantities of high quality protein samples and (ii) growing high quality protein crystals that are suitable for X-ray structure determination,7,20,21,23,25-47 membrane proteins present additional challenges. For crystallization it is necessary to extract the membrane proteins from the cellular membrane. However, this process often leads to denaturation. In fact, membrane proteins have proven to be so difficult to crystallize that of the more than 66,000 structures deposited in the Protein Data Bank,48 less than 1% are for membrane proteins, with even fewer present at high resolution (< 2Å)4,6,49 and only a handful are human membrane proteins.49 A variety of strategies including detergent solubilization50-53 and the use of artificial membrane-like environments have been developed to circumvent this challenge.43,53-55 In recent years, the use of a lipidic mesophase as a medium for crystallizing membrane proteins has been demonstrated to increase success for a wide range of membrane proteins, including human receptor proteins.54,56-62 This in meso method for membrane protein crystallization, however, is still by no means routine due to challenges related to sample preparation at sub-microliter volumes and to crystal harvesting and X-ray data collection. This dissertation presents various aspects of the development of a microfluidic platform to enable high throughput in meso membrane protein crystallization at a level beyond the capabilities of current technologies. Microfluidic platforms for protein crystallization and other lab-on-a-chip applications have been well demonstrated.9,63-66 These integrated chips provide fine control over transport phenomena and the ability to perform high throughput analyses via highly integrated fluid networks. However, the development of microfluidic platforms for in meso protein crystallization required the development of strategies to cope with extremely viscous and non-Newtonian fluids. A theoretical treatment of highly viscous fluids in microfluidic devices is presented in Chapter 3, followed by the application of these strategies for the development of a microfluidic mixer capable of preparing a mesophase sample for in meso crystallization at a scale of less than 20 nL in Chapter 4. This approach was validated with the successful on chip in meso crystallization of the membrane protein bacteriorhodopsin. In summary, this is the first report of a microfluidic platform capable of performing in meso crystallization on-chip, representing a 1000x reduction in the scale at which mesophase trials can be prepared. Once protein crystals have formed, they are typically harvested from the droplet they were grown in and mounted for crystallographic analysis. Despite the high throughput automation present in nearly all other aspects of protein structure determination, the harvesting and mounting of crystals is still largely a manual process. Furthermore, during mounting the fragile protein crystals can potentially be damaged, both from physical and environmental shock. To circumvent these challenges an X-ray transparent microfluidic device architecture was developed to couple the benefits of scale, integration, and precise fluid control with the ability to perform in situ X-ray analysis (Chapter 5). This approach was validated successfully by crystallization and subsequent on-chip analysis of the soluble proteins lysozyme, thaumatin, and ribonuclease A and will be extended to microfluidic platforms for in meso membrane protein crystallization. The ability to perform in situ X-ray analysis was shown to provide extremely high quality diffraction data, in part as a result of not being affected by damage due to physical handling of the crystals. As part of the work described in this thesis, a variety of data collection strategies for in situ data analysis were also tested, including merging of small slices of data from a large number of crystals grown on a single chip, to allow for diffraction analysis at biologically relevant temperatures. While such strategies have been applied previously,57,59,61,67 they are potentially challenging when applied via traditional methods due to the need to grow and then mount a large number of crystals with minimal crystal-to-crystal variability. The integrated nature of microfluidic platforms easily enables the generation of a large number of reproducible crystallization trials. This, coupled with in situ analysis capabilities has the potential of being able to acquire high resolution structural data of proteins at biologically relevant conditions for which only small crystals, or crystals which are adversely affected by standard cryocooling techniques, could be obtained (Chapters 5 and 6). While the main focus of protein crystallography is to obtain three-dimensional protein structures, the results of typical experiments provide only a static picture of the protein. The use of polychromatic or Laue X-ray diffraction methods enables the collection of time resolved structural information. These experiments are very sensitive to crystal quality, however, and often suffer from severe radiation damage due to the intense polychromatic X-ray beams. Here, as before, the ability to perform in situ X-ray analysis on many small protein crystals within a microfluidic crystallization platform has the potential to overcome these challenges. An automated method for collecting a "single-shot" of data from a large number of crystals was developed in collaboration with the BioCARS team at the Advanced Photon Source at Argonne National Laboratory (Chapter 6). The work described in this thesis shows that, even more so than for traditional structure determination efforts, the ability to grow and analyze a large number of high quality crystals is critical to enable time resolved structural studies of novel proteins. In addition to enabling X-ray crystallography experiments, the development of X-ray transparent microfluidic platforms also has tremendous potential to answer other scientific questions, such as unraveling the mechanism of in meso crystallization. For instance, the lipidic mesophases utilized during in meso membrane protein crystallization can be characterized by small angle X-ray diffraction analysis. Coupling in situ analysis with microfluidic platforms capable of preparing these difficult mesophase samples at very small volumes has tremendous potential to enable the high throughput analysis of these systems on a scale that is not reasonably achievable using conventional sample preparation strategies (Chapter 7). In collaboration with the LS-CAT team at the Advanced Photon Source, an experimental station for small angle X-ray analysis coupled with the high quality visualization capabilities needed to target specific microfluidic samples on a highly integrated chip is under development. Characterizing the phase behavior of these mesophase systems and the effects of various additives present in crystallization trials is key for developing an understanding of how in meso crystallization occurs. A long term goal of these studies is to enable the rational design of in meso crystallization experiments so as to avoid or limit the need for high throughput screening efforts. In summary, this thesis describes the development of microfluidic platforms for protein crystallization with in situ analysis capabilities. Coupling the ability to perform in situ analysis with the small scale, fine control, and the high throughput nature of microfluidic platforms has tremendous potential to enable a new generation of crystallographic studies and facilitate the structure determination of important biological targets. The development of platforms for in meso membrane protein crystallization is particularly significant because they enable the preparation of highly viscous mixtures at a previously unachievable scale. Work in these areas is ongoing and has tremendous potential to improve not only current the methods of protein crystallization and crystallography, but also to enhance our knowledge of the structure and function of proteins which could have a significant scientific and medical impact on society as a whole. The microfluidic technology described in this thesis has the potential to significantly advance our understanding of the structure and function of membrane proteins, thereby aiding the elucidation of human biology, the development of pharmaceuticals with fewer side effects for a wide range of diseases. References (1) Quick, M.; Javitch, J. A. P Natl Acad Sci USA 2007, 104, 3603. (2) Trubetskoy, V. S.; Burke, T. J. Am Lab 2005, 37, 19. (3) Pecina, P.; Houstkova, H.; Hansikova, H.; Zeman, J.; Houstek, J. Physiol Res 2004, 53, S213. (4) Arinaminpathy, Y.; Khurana, E.; Engelman, D. M.; Gerstein, M. B. Drug Discovery Today 2009, 14, 1130. (5) Overington, J. P.; Al-Lazikani, B.; Hopkins, A. L. Nat Rev Drug Discov 2006, 5, 993. (6) Dauter, Z.; Lamzin, V. S.; Wilson, K. S. Current Opinion in Structural Biology 1997, 7, 681. (7) Hansen, C.; Quake, S. R. Current Opinion in Structural Biology 2003, 13, 538. (8) Govada, L.; Carpenter, L.; da Fonseca, P. C. A.; Helliwell, J. R.; Rizkallah, P.; Flashman, E.; Chayen, N. E.; Redwood, C.; Squire, J. M. J Mol Biol 2008, 378, 387. (9) Hansen, C. L.; Skordalakes, E.; Berger, J. M.; Quake, S. R. P Natl Acad Sci USA 2002, 99, 16531. (10) Leng, J.; Salmon, J.-B. Lab Chip 2009, 9, 24. (11) Zheng, B.; Gerdts, C. J.; Ismagilov, R. F. Current Opinion in Structural Biology 2005, 15, 548. (12) Lorber, B.; Delucas, L. J.; Bishop, J. B. J Cryst Growth 1991, 110, 103. (13) Talreja, S.; Perry, S. L.; Guha, S.; Bhamidi, V.; Zukoski, C. F.; Kenis, P. J. A. The Journal of Physical Chemistry B 2010, 114, 4432. (14) Chayen, N. E. Current Opinion in Structural Biology 2004, 14, 577. (15) He, G. W.; Bhamidi, V.; Tan, R. B. H.; Kenis, P. J. A.; Zukoski, C. F. Cryst Growth Des 2006, 6, 1175. (16) Zheng, B.; Tice, J. D.; Roach, L. S.; Ismagilov, R. F. Angew Chem Int Edit 2004, 43, 2508. (17) Li, L.; Mustafi, D.; Fu, Q.; Tereshko, V.; Chen, D. L. L.; Tice, J. D.; Ismagilov, R. F. P Natl Acad Sci USA 2006, 103, 19243. (18) Song, H.; Chen, D. L.; Ismagilov, R. F. Angew Chem Int Edit 2006, 45, 7336. (19) van der Woerd, M.; Ferree, D.; Pusey, M. Journal of Structural Biology 2003, 142, 180. (20) Ng, J. D.; Gavira, J. A.; Garcia-Ruiz, J. M. Journal of Structural Biology 2003, 142, 218. (21) Talreja, S.; Kenis, P. J. A.; Zukoski, C. F. Langmuir 2007, 23, 4516. (22) Hansen, C. L.; Quake, S. R.; Berger, J. M. US, 2007. (23) Newman, J.; Fazio, V. J.; Lawson, B.; Peat, T. S. Cryst Growth Des 2010, 10, 2785. (24) Newman, J.; Xu, J.; Willis, M. C. Acta Crystallographica Section D 2007, 63, 826. (25) Collingsworth, P. D.; Bray, T. L.; Christopher, G. K. J Cryst Growth 2000, 219, 283. (26) Durbin, S. D.; Feher, G. Annu Rev Phys Chem 1996, 47, 171. (27) Talreja, S.; Kim, D. Y.; Mirarefi, A. Y.; Zukoski, C. F.; Kenis, P. J. A. J Appl Crystallogr 2005, 38, 988. (28) Yoshizaki, I.; Nakamura, H.; Sato, T.; Igarashi, N.; Komatsu, H.; Yoda, S. J Cryst Growth 2002, 237, 295. (29) Anderson, M. J.; Hansen, C. L.; Quake, S. R. P Natl Acad Sci USA 2006, 103, 16746. (30) Hansen, C. L.; Sommer, M. O. A.; Quake, S. R. P Natl Acad Sci USA 2004, 101, 14431. (31) Lounaci, M.; Rigolet, P.; Abraham, C.; Le Berre, M.; Chen, Y. Microelectron Eng 2007, 84, 1758. (32) Zheng, B.; Roach, L. S.; Ismagilov, R. F. J Am Chem Soc 2003, 125, 11170. (33) Zhou, X.; Lau, L.; Lam, W. W. L.; Au, S. W. N.; Zheng, B. Anal. Chem. 2007. (34) Cherezov, V.; Caffrey, M. J Appl Crystallogr 2003, 36, 1372. (35) Qutub, Y.; Reviakine, I.; Maxwell, C.; Navarro, J.; Landau, E. M.; Vekilov, P. G. J Mol Biol 2004, 343, 1243. (36) Rummel, G.; Hardmeyer, A.; Widmer, C.; Chiu, M. L.; Nollert, P.; Locher, K. P.; Pedruzzi, I.; Landau, E. M.; Rosenbusch, J. P. Journal of Structural Biology 1998, 121, 82. (37) Gavira, J. A.; Toh, D.; Lopez-Jaramillo, J.; Garcia-Ruiz, J. M.; Ng, J. D. Acta Crystallogr D 2002, 58, 1147. (38) Stevens, R. C. Current Opinion in Structural Biology 2000, 10, 558. (39) Baker, M. Nat Methods 2010, 7, 429. (40) McPherson, A. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 5. (41) Gabrielsen, M.; Gardiner, A. T.; Fromme, P.; Cogdell, R. J. In Current Topics in Membranes, Volume 63; Volume 63 ed.; DeLucas, L., Ed.; Academic Press: 2009, p 127. (42) Page, R. In Methods in Molecular Biology: Structural Proteomics - High Throughput Methods; Kobe, B., Guss, M., Huber, T., Eds.; Humana Press: Totowa, NJ, 2008; Vol. 426, p 345. (43) Caffrey, M. Ann Rev Biophys 2009, 38, 29. (44) Doerr, A. Nat Methods 2006, 3, 244. (45) Brostromer, E.; Nan, J.; Li, L.-F.; Su, X.-D. Biochemical and Biophysical Research Communications 2009, 386, 634. (46) Li, G.; Chen, Q.; Li, J.; Hu, X.; Zhao, J. Anal Chem 2010, 82, 4362. (47) Jia, Y.; Liu, X.-Y. The Journal of Physical Chemistry B 2006, 110, 6949. (48) RCSB Protein Data Bank. http://www.rcsb.org/ (July 11, 2010). (49) Membrane Proteins of Known 3D Structure. http://blanco.biomol.uci.edu/Membrane_Proteins_xtal.html (July 11, 2010). (50) Michel, H. Trends Biochem Sci 1983, 8, 56. (51) Rosenbusch, J. P. Journal of Structural Biology 1990, 104, 134. (52) Garavito, R. M.; Picot, D. Methods 1990, 1, 57. (53) Kulkarni, C. V. 2010; Vol. 12, p 237. (54) Landau, E. M.; Rosenbusch, J. P. P Natl Acad Sci USA 1996, 93, 14532. (55) Pebay-Peyroula, E.; Rummel, G.; Rosenbusch, J. P.; Landau, E. M. Science 1997, 277, 1676. (56) Cherezov, V.; Liu, W.; Derrick, J. P.; Luan, B.; Aksimentiev, A.; Katritch, V.; Caffrey, M. Proteins: Structure, Function, and Bioinformatics 2008, 71, 24. (57) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. Science 2007, 318, 1258. (58) Cherezov, V.; Yamashita, E.; Liu, W.; Zhalnina, M.; Cramer, W. A.; Caffrey, M. J Mol Biol 2006, 364, 716. (59) Jaakola, V. P.; Griffith, M. T.; Hanson, M. A.; Cherezov, V.; Chien, E. Y. T.; Lane, J. R.; IJzerman, A. P.; Stevens, R. C. Science 2008, 322, 1211. (60) Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G. F.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K. Science 2007, 318, 1266. (61) Wacker, D.; Fenalti, G.; Brown, M. A.; Katritch, V.; Abagyan, R.; Cherezov, V.; Stevens, R. C. J Am Chem Soc 2010, 132, 11443. (62) Höfer, N.; Aragão, D.; Caffrey, M. Biophys J 2010, 99, L23. (63) Li, L.; Ismagilov, R. F. Ann Rev Biophys 2010. (64) Pal, R.; Yang, M.; Lin, R.; Johnson, B. N.; Srivastava, N.; Razzacki, S. Z.; Chomistek, K. J.; Heldsinger, D. C.; Haque, R. M.; Ugaz, V. M.; Thwar, P. K.; Chen, Z.; Alfano, K.; Yim, M. B.; Krishnan, M.; Fuller, A. O.; Larson, R. G.; Burke, D. T.; Burns, M. A. Lab Chip 2005, 5, 1024. (65) Jayashree, R. S.; Gancs, L.; Choban, E. R.; Primak, A.; Natarajan, D.; Markoski, L. J.; Kenis, P. J. A. J Am Chem Soc 2005, 127, 16758. (66) Wootton, R. C. R.; deMello, A. J. Chem Commun 2004, 266. (67) McPherson, A. J Appl Crystallogr 2000, 33, 397.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This document presents catalogue techniques used at network GDAC level to facilitate the discovery of platforms and data files. Some AtlantOS networks are organized as DAC-GDACs that continuously update a catalogue of metadata on observation datasets and platforms: • A DAC is a Data Assembly Centre operating at national or regional scale. It manages data and metadata for its area with a direct link to Scientifics and Operators. The DAC pushes observations to the network GDAC. • A GDAC is a Global Data Assembly Centre. It is designed for a global observation network such as Argo, OceanSITES, DBCP, EGO, Gosud, etc… The GDAC aggregates data and metadata of an observation network, in real-time and delayed mode, provided by DACs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Avec l’apparition de plus en plus de souches de bactérie résistante aux antibiotiques, le développement de nouveaux antibiotiques est devenu une important problématique pour les agences de santé. C’est pour cela que la création de nouvelles plateformes pour accélérer la découverte de médicaments est devenu un besoin urgent. Dans les dernières décennies, la recherche était principalement orientée sur la modification de molécules préexistantes, la méta-analyse d’organismes produisant des molécules activent et l’analyse de librairies moléculaires pour trouver des molécules synthétiques activent, ce qui s’est avéré relativement inefficace. Notre but était donc de développer de nouvelles molécules avec des effets thérapeutiques de façon plus efficace à une fraction du prix et du temps comparé à ce qui se fait actuellement. Comme structure de base, nous avons utilisé des métabolites secondaires qui pouvaient altérer le fonctionnement des protéines ou l’interaction entre deux protéines. Pour générer ces molécules, j’ai concentré mes efforts sur les terpènes, une classe de métabolites secondaires qui possède un large éventail d’activités biologiques incluant des activités antibactériennes. Nous avons développé un système de chromosome artificiel de levure (YAC) qui permet à la fois l’assemblage directionnel et combinatoire de gènes qui permet la création de voies de biosynthèse artificielles. Comme preuve de concept, j’ai développé des YACs qui contiennent les gènes pour l’expression des enzymes impliquées dans la biosynthèse de la -carotène et de l’albaflavenone et produit ces molécules avec un haut rendement. Finalement, Des YACs produits à partir de librairies de gènes ont permis de créer une grande diversité de molécules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Avec l’apparition de plus en plus de souches de bactérie résistante aux antibiotiques, le développement de nouveaux antibiotiques est devenu une important problématique pour les agences de santé. C’est pour cela que la création de nouvelles plateformes pour accélérer la découverte de médicaments est devenu un besoin urgent. Dans les dernières décennies, la recherche était principalement orientée sur la modification de molécules préexistantes, la méta-analyse d’organismes produisant des molécules activent et l’analyse de librairies moléculaires pour trouver des molécules synthétiques activent, ce qui s’est avéré relativement inefficace. Notre but était donc de développer de nouvelles molécules avec des effets thérapeutiques de façon plus efficace à une fraction du prix et du temps comparé à ce qui se fait actuellement. Comme structure de base, nous avons utilisé des métabolites secondaires qui pouvaient altérer le fonctionnement des protéines ou l’interaction entre deux protéines. Pour générer ces molécules, j’ai concentré mes efforts sur les terpènes, une classe de métabolites secondaires qui possède un large éventail d’activités biologiques incluant des activités antibactériennes. Nous avons développé un système de chromosome artificiel de levure (YAC) qui permet à la fois l’assemblage directionnel et combinatoire de gènes qui permet la création de voies de biosynthèse artificielles. Comme preuve de concept, j’ai développé des YACs qui contiennent les gènes pour l’expression des enzymes impliquées dans la biosynthèse de la -carotène et de l’albaflavenone et produit ces molécules avec un haut rendement. Finalement, Des YACs produits à partir de librairies de gènes ont permis de créer une grande diversité de molécules.