944 resultados para Discomfort and comfort perception


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RAMOS RT, MATTOS DA, REBOUCAS ITS, RANVAUD RD. Space and motion perception and discomfort in air travel. Aviat Space Environ Med 2012; 83:1162-6. Introduction: The perception of comfort during air trips is determined by several factors. External factors like cabin design and environmental parameters (temperature, humidity, air pressure, noise, and vibration) interact with individual characteristics (anxiety traits, fear of flying, and personality) from arrival at the airport to landing at the destination. In this study, we investigated the influence of space and motion discomfort (SMD), fear of heights, and anxiety on comfort perception during all phases of air travel. Methods: We evaluated 51 frequent air travelers through a modified version of the Flight Anxiety Situations Questionnaire (FAS), in which new items were added and where the subjects were asked to report their level of discomfort or anxiety (not fear) for each phase of air travel (Chronbach's alpha = 0.974). Correlations were investigated among these scales: State-Trait Anxiety Inventory (STAB, Cohen's Acrophobia Questionnaire, and the Situational Characteristics Questionnaire (SitQ, designed to estimate SMD levels). Results: Scores of SitQ correlated with discomfort in situations involving space and movement perception (Pearson's rho = 0.311), while discomfort was associated with cognitive mechanisms related to scores in the anxiety scales (Pearson's rho = 0.375). Anxiety traits were important determinants of comfort perception before and after flight, while the influence of SMD was more significant during the time spent in the aircraft cabin. Discussion: SMD seems to be an important modulator of comfort perception in air travel. Its influence on physical well being and probably on cognitive performance, with possible effects on flight safety, deserves further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The urban squares are the gathering places where people interact with each other. Therefore, they are seen as important places contributing in the integration and social cohesion within societies. To ensure equality in urban places, designers are to take into considerations the need of the diverse nature of different users. This task is hard especially in global cities where populations are characterized by their cultural plurality. To ensure the creation of successful urban places, the designer is to take the comfort of users into consideration. However, the outdoor thermal comfort is not easily assessed as it examines the climatic and personal variables for users. This paper aims to contribute in assessing the thermal comfort for users of different personal and cultural background in Melbourne city, Australia as one of the global cities characterized by the diversity and plurality of its population due to migration. A case study approach is adopted to examine the users’ thermal comfort within the contextual variables of Federation Square. Multiple sources of evidence such as climate measurements, observations and questionnaires will be used to ensure the validity of results. The findings are to contribute in the quality and equality of design for outdoor urban places in multicultural cities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to gain a competitive edge in the market, automotive manufacturers and automotive seat suppliers have identified seat ergonomics for further development to improve overall vehicle comfort. Adjustable lumbar support devices have been offered since long as comfort systems in either a 2-way or 4-way adjustable configuration, although their effect on lumbar strain is not well documented. The effect of a lumbar support on posture and muscular strain, and therefore the relationship between discomfort and comfort device parameter settings, requires clarification. The aim of this paper is to study the effect of a 4-way lumbar support on lower trunk and pelvis muscle activity, pelvic tilt and spine curvature during a car seating activity. 10 healthy subjects (5 m/f; age 19-39) performed a seating activity in a passenger vehicle with seven different static lumbar support positions. The lumbar support was tested in 3 different height positions in relation to the seatback surface centreline (high, centre, low), each having 2 depths positions (lumbar prominence). An extra depth position was added for the centre position. Posture data were collected using a VICON MX motion capture system and NORAXON DTS goniometers and inclinometer. A rigid-body model of an adjustable car seat with four-way adjustable lumbar support was constructed in UGS Siemens NX and connected to a musculoskeletal model of a seated-human, modelled in AnyBody. Wireless electromyography (EMG) was used to calibrate the musculoskeletal model and assess the relationship between (a) muscular strain and lumbar prominence (normal to seatback surface) respective to the lumbar height (alongside seatback surface), (b) hip joint moment and lumbar prominence (normal to seatback surface) respective to lumbar height (alongside seatback surface) and (c) pelvic tilt and lumbar prominence (normal to seatback surface) respective to the lumbar height (alongside seatback surface). This study was based on the assumption that the musculoskeletal human model was seated at the correct R-Point (SgRP), determined via the occupant packaging toolkit in the JACK digital human model. The effect of the interaction between the driver/car-seat has been investigated for factors resulting from the presence and adjustment of a 4-way lumbar support. The results obtained show that various seat adjustments, and driver’s lumbar supports can have complex influence on the muscle activation, joint forces and moments, all of which can affect the comfort perception of the driver. This study enables the automotive industry to optimise passenger vehicle seat development and design. It further more supports the evaluation of static postural and dynamic seat comfort in normal everyday driving tasks and can be applied for future car design to reduce investment and improve comfort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal comfort in outdoor places has proven to have a strong relationship with their users’ attendance and behaviour [1]. Creating comfortable places is therefore to be considered a crucial part of the design process, as taking it into consideration help increasing the social integration between people and therefore fosters sustainability within cities [2]. With the increasing number of migrants within global cities, a new challenge has been facing thermal comfort studies. This challenge is related to the different cultural and climatic origins of those migrants and how they can adapt to the new climatic conditions they are to move in. This paper aims to explore the impact of thermal comfort adaptation on users’ thermal perception in multicultural cities. Consequently, a quantitative field study is applied in Melbourne city, Australia in order to investigate peoples’ outdoor thermal comfort. The analyses were based upon the measurement of climatic parameters that were monitored simultaneously with a questionnaire to determine users’ thermal comfort perception in relation to their time spent in the city. The findings of thermal comfort investigations could be applied into improving the quality of urban areas within global cities and therefore promote the integration within individuals in those societies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationships were investigated between the prickle discomfort scores, assessed by human response from wearer trial garment assessment, and sleeve trial, Wool ComfortMeter (WCM) and Wool HandleMeter (WHM) assessments of fabrics, and fiber diameter characteristics including mean fiber diameter (MFD). Sleeve trial assessment followed exercise, the use of a control sleeve to reduce participant variance and four sensory traits. WHM provides eight handle parameters calibrated against a panel of experts. Four scenarios were evaluated: sleeve trial assessment with MFD; sleeve trial assessment with MFD and WCM; sleeve trial assessment with MFD, WCM and WHM parameters; and sleeve trial assessment with WCM and WHM parameters. Data were analyzed using correlation and forward stepwise general linear modeling. There was no evidence that the incidence of fibers coarser than 30 µm aided the prediction of prickle discomfort once MFD had been accounted for in the models. There were significant correlations between the WCM measurement and each sleeve trial attribute. There was no significant correlation between WHM parameters and sleeve trial assessments. The sleeve trial attribute of ‘skin feel’ offers potential to improve the predictions made of wearer trial prickle discomfort when used in association of the WCM with or without data on fabric MFD. There was little evidence to support using WHM parameters with or without the WCM in predicting wearer assessed prickle discomfort of fabrics. These results indicate that the rapid evaluation of fabrics using sleeve trial assessment can provide cost effective ranking of consumer preferences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While spatial determinants of emmetropization have been examined extensively in animal models and spatial processing of human myopes has also been studied, there have been few studies investigating temporal aspects of emmetropization and temporal processing in human myopia. The influence of temporal light modulation on eye growth and refractive compensation has been observed in animal models and there is evidence of temporal visual processing deficits in individuals with high myopia or other pathologies. Given this, the aims of this work were to examine the relationships between myopia (i.e. degree of myopia and progression status) and temporal visual performance and to consider any temporal processing deficits in terms of the parallel retinocortical pathways. Three psychophysical studies investigating temporal processing performance were conducted in young adult myopes and non-myopes: (1) backward visual masking, (2) dot motion perception and (3) phantom contour. For each experiment there were approximately 30 young emmetropes, 30 low myopes (myopia less than 5 D) and 30 high myopes (5 to 12 D). In the backward visual masking experiment, myopes were also classified according to their progression status (30 stable myopes and 30 progressing myopes). The first study was based on the observation that the visibility of a target is reduced by a second target, termed the mask, presented quickly after the first target. Myopes were more affected by the mask when the task was biased towards the magnocellular pathway; myopes had a 25% mean reduction in performance compared with emmetropes. However, there was no difference in the effect of the mask when the task was biased towards the parvocellular system. For all test conditions, there was no significant correlation between backward visual masking task performance and either the degree of myopia or myopia progression status. The dot motion perception study measured detection thresholds for the minimum displacement of moving dots, the maximum displacement of moving dots and degree of motion coherence required to correctly determine the direction of motion. The visual processing of these tasks is dominated by the magnocellular pathway. Compared with emmetropes, high myopes had reduced ability to detect the minimum displacement of moving dots for stimuli presented at the fovea (20% higher mean threshold) and possibly at the inferior nasal retina. The minimum displacement threshold was significantly and positively correlated to myopia magnitude and axial length, and significantly and negatively correlated with retinal thickness for the inferior nasal retina. The performance of emmetropes and myopes for all the other dot motion perception tasks were similar. In the phantom contour study, the highest temporal frequency of the flickering phantom pattern at which the contour was visible was determined. Myopes had significantly lower flicker detection limits (21.8 ± 7.1 Hz) than emmetropes (25.6 ± 8.8 Hz) for tasks biased towards the magnocellular pathway for both high (99%) and low (5%) contrast stimuli. There was no difference in flicker limits for a phantom contour task biased towards the parvocellular pathway. For all phantom contour tasks, there was no significant correlation between flicker detection thresholds and magnitude of myopia. Of the psychophysical temporal tasks studied here those primarily involving processing by the magnocellular pathway revealed differences in performance of the refractive error groups. While there are a number of interpretations for this data, this suggests that there may be a temporal processing deficit in some myopes that is selective for the magnocellular system. The minimum displacement dot motion perception task appears the most sensitive test, of those studied, for investigating changes in visual temporal processing in myopia. Data from the visual masking and phantom contour tasks suggest that the alterations to temporal processing occur at an early stage of myopia development. In addition, the link between increased minimum displacement threshold and decreasing retinal thickness suggests that there is a retinal component to the observed modifications in temporal processing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motorcycle trauma is a serious road safety issue in Queensland and throughout Australia. In 2009, Queensland Transport (later Transport and Main Roads or TMR) appointed CARRS-Q to provide a three-year program of Road Safety Research Services for Motorcycle Rider Safety. Funding for this research originated from the Motor Accident Insurance Commission. This program of research was undertaken to produce knowledge to assist TMR to improve motorcycle safety by further strengthening the licensing and training system to make learner riders safer by developing a pre-learner package (Deliverable 1), and by evaluating the QRide CAP program to ensure that it is maximally effective and contributes to the best possible training for new riders (Deliverable 2). The focus of this report is Deliverable 3 of the overall program of research. It identifies potential new licensing components that will reduce the incidence of risky riding and improve higher-order cognitive skills in new riders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To determine if systematic variation of diagnostic terminology (i.e. concussion, minor head injury [MHI], mild traumatic brain injury [mTBI]) following a standardized injury description produced different expected symptoms and illness perceptions. We hypothesized that worse outcomes would be expected of mTBI, compared to other diagnoses, and that MHI would be perceived as worse than concussion. Method:108 volunteers were randomly allocated to conditions in which they read a vignette describing a motor vehicle accident-related mTBI followed by: a diagnosis of mTBI (n=27), MHI (n=24), concussion (n=31); or, no diagnosis (n=26). All groups rated: a) event ‘undesirability’; b) illness perception, and; c) expected Postconcussion Syndrome (PCS) and Posttraumatic Stress Disorder (PTSD) symptoms six months post injury. Results: On average, more PCS symptomatology was expected following mTBI compared to other diagnoses, but this difference was not statistically significant. There was a statistically significant group effect on undesirability (mTBI>concussion & MHI), PTSD symptomatology (mTBI & no diagnosis>concussion), and negative illness perception (mTBI & no diagnosis>concussion). Conclusion: In general, diagnostic terminology did not affect anticipated PCS symptoms six months post injury, but other outcomes were affected. Given that these diagnostic terms are used interchangeably, this study suggests that changing terminology can influence known contributors to poor mTBI outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cooperative Systems provide, through the multiplication of information sources over the road, a lot of potential to improve the safety of road users, especially drivers. However, developing cooperative ITS applications requires additional resources compared to non-cooperative applications which are both time consuming and expensive. In this paper, we present a simulation architecture aimed at prototyping cooperative ITS applications in an accurate and detailed, close-to-reality environment; the architecture is designed to be modular and generalist. It can be used to simulate any type of CS applications as well as augmented perception. Then, we discuss the results of two applications deployed with our architecture, using a common freeway emergency braking scenario. The first application is Emergency Electronic Brake Light (EEBL); we discuss improvements in safety in terms of the number of crashes and the severity of crashes. The second application compares the performance of a cooperative risk assessment using an augmented map against a non-cooperative approach based on local-perception only. Our results show a systematic improvement of forward warning time for most vehicles in the string when using the augmented-map-based risk assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing the modal share of public transit systems has become paramount in aiding the reduction on the excessive reliance of personal motor vehicles. More so the need to increase the share of active modes of transport such as the use of bicycles, therefore there is an ever increasing need to use bicycles both on shared pedestrian paths and on-road cycling. The risk to cyclist, or consequently the perception of the risk from both cyclists and motorists alike, is an important factor to increase the use of this transport mode. This paper investigates perception of bicycle safety by conducting a survey and analysing the survey data to understand how participants with different backgrounds perceive the risks of cycling for transport. Contributing factors to people’s perception of bicycle safety were identified and compared across different road user groups, based upon which recommendations were made on how to improve bicycle safety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to promote integrity in autonomous perceptual systems, with a focus on outdoor unmanned ground vehicles equipped with a camera and a 2D laser range finder. A method to check for inconsistencies between the data provided by these two heterogeneous sensors is proposed and discussed. First, uncertainties in the estimated transformation between the laser and camera frames are evaluated and propagated up to the projection of the laser points onto the image. Then, for each pair of laser scan-camera image acquired, the information at corners of the laser scan is compared with the content of the image, resulting in a likelihood of correspondence. The result of this process is then used to validate segments of the laser scan that are found to be consistent with the image, while inconsistent segments are rejected. Experimental results illustrate how this technique can improve the reliability of perception in challenging environmental conditions, such as in the presence of airborne dust.