863 resultados para Direct repeat


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Mycobacterium tuberculosis has a global population structure consisting of six main phylogenetic lineages associated with specific geographic regions and human populations. One particular M. tuberculosis genotype known as “Beijing” has repeatedly been associated with drug resistance and has been emerging in some parts of the world. “Beijing” strains are traditionally defined based on a characteristic spoligotyping pattern. We used three alternative genotyping techniques to revisit the phylogenetic classification of M. tuberculosis complex (MTBC) strains exhibiting the typical “Beijing” spoligotyping pattern. Methods and Findings MTBC strains were obtained from an ongoing molecular epidemiological study in Switzerland and Nepal. MTBC genotyping was performed based on SNPs, genomic deletions, and 24-loci MIRU-VNTR. We identified three MTBC strains from patients originating from Tibet, Portugal and Nepal which exhibited a spoligotyping patterns identical to the classical Beijing signature. However, based on three alternative molecular markers, these strains were assigned to Lineage 3 (also known as Delhi/CAS) rather than to Lineage 2 (also known as East-Asian lineage). Sequencing of the RD207 in one of these strains showed that the deletion responsible for this “Pseudo-Beijing” spoligotype was about 1,000 base pairs smaller than the usual deletion of RD207 in classical “Beijing” strains, which is consistent with an evolutionarily independent deletion event in the direct repeat (DR) region of MTBC. Conclusions We provide an example of convergent evolution in the DR locus of MTBC, and highlight the limitation of using spoligotypes for strain classification. Our results indicate that a proportion of “Beijing” strains may have been misclassified in the past. Markers that are more phylogenetically robust should be used when exploring strain-specific differences in experimental or clinical phenotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chi63 promoter directs glucose-sensitive, chitin-dependent transcription of a gene involved in the utilization of chitin as carbon source. Analysis of 5′ and 3′ deletions of the promoter region revealed that a 350-bp segment is sufficient for wild-type levels of expression and regulation. The analysis of single base changes throughout the promoter region, introduced by random and site-directed mutagenesis, identified several sequences to be important for activity and regulation. Single base changes at −10, −12, −32, −33, −35, and −37 upstream of the transcription start site resulted in loss of activity from the promoter, suggesting that bases in these positions are important for RNA polymerase interaction. The sequences centered around −10 (TATTCT) and −35 (TTGACC) in this promoter are, in fact, prototypical of eubacterial promoters. Overlapping the RNA polymerase binding site is a perfect 12-bp direct repeat sequence. Some base changes within this direct repeat resulted in constitutive expression, suggesting that this sequence is an operator for negative regulation. Other base changes resulted in loss of glucose repression while retaining the requirement for chitin induction, suggesting that this sequence is also involved in glucose repression. The fact that cis-acting mutations resulted in glucose resistance but not inducer independence rules out the possibility that glucose repression acts exclusively by inducer exclusion. The fact that mutations that affect glucose repression and chitin induction fall within the same direct repeat sequence module suggests that the direct repeat sequence facilitates both chitin induction and glucose repression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ear3/COUP is an orphan member of the steroid/thyroid hormone receptor superfamily of transcription factors and binds most tightly to a direct repeat of AGGTCA with 1 nucleotide in between (DR1). Ear3/COUP also binds with a similar affinity to the palindromic thyroid hormone response element (TRE). This binding preference of Ear3/COUP is same as that of the retinoid X receptor (RXR), which is another member of the superfamily. In the present study, we identified a sequence responsible for Ear3/COUP-mediated transactivation in the region downstream of the transcription start site of the mouse mammary tumor virus promoter. This cis-acting sequence was unresponsive to RXR. When the DR1 or TRE sequence was added upstream of the promoter, transactivation by Ear3/COUP was completely abolished, whereas RXR enhanced transcription from the promoter. The mode of action of Ear3/COUP could be utilized to control complex gene expressions in morphogenesis, homeostasis, and development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Friedreich's ataxia is caused by the expansion of the GAA•TTC trinucleotide repeat sequence located in intron 1 of the frataxin gene. The long GAA•TTC repeats are known to form several non-B DNA structures including hairpins, triplexes, parallel DNA and sticky DNA. Therefore it is believed that alternative DNA structures play a role in the loss of mRNA transcript and functional frataxin protein in FRDA patients. We wanted to further elucidate the characteristics for formation and stability of sticky DNA by evaluating the structure in a plasmid based system in vitro and in vivo in Escherichia coli. The negative supercoil density of plasmids harboring different lengths of GAA•TTC repeats, as well as either one or two repeat tracts were studied in E. coli to determine if plasmids containing two long tracts (≥60 repeats) in a direct repeat orientation would have a different topological effect in vivo compared to plasmids that harbored only one GAA•TTC tract or two tracts of < 60 repeats. The experiments revealed that, in fact, sticky DNA forming plasmids had a lower average negative supercoil density (-σ) compared to all other control plasmids used that had the potential to form other non-B DNA structures such as triplexes or Z-DNA. Also, the requirements for in vitro dissociation and reconstitution of the DNA•DNA associated region of sticky DNA were evaluated. Results conclude that the two repeat tracts associate in the presence of negative supercoiling and MgCl 2 or MnCl2 in a time and concentration-dependent manner. Interaction of the repeat sequences was not observed in the absence of negative supercoiling and/or MgCl2 or in the presence of other monovalent or divalent cations, indicating that supercoiling and quite specific cations are needed for the association of sticky DNA. These are the first experiments studying a more specific role of supercoiling and cation influence on this DNA conformation. To support our model of the topological effects of sticky DNA in plasmids, changes in sticky DNA band migration was measured with reference to the linear DNA after treatment with increasing concentrations of ethidium bromide (EtBr). The presence of independent negative supercoil domains was confirmed by this method and found to be segregated by the DNA-DNA associated region. Sequence-specific polyamide molecules were used to test the effect of binding of the ligands to the GAA•TTC repeats on the inhibition of sticky DNA. The destabilization of the sticky DNA conformation in vitro through this binding of the polyamides demonstrated the first conceptual therapeutic approach for the treatment of FRDA at the DNA molecular level. ^ Thus, examining the properties of sticky DNA formed by these long repeat tracts is important in the elucidation of the possible role of sticky DNA in Friedreich's ataxia. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The renal sodium-sulfate cotransporter, NaSi-1, a protein implicated to control serum sulfate levels, has been shown to be regulated in vivo by 1,25-dihydroxyvitamin D-3 (1,25-(OH)(2)D-3) and tri-iodothyronine (T-3). Recently, we cloned the mouse NaSi-1 gene (Nas1) and in the present study identified a 1,25-(OH)(2)D-3- and T-3-responsive element located within the Nas1 promoter. Mutational analysis of the Nas1 promoter resulted in identification of a direct repeat 6-type vitamin-D-responsive element (DR6 VDRE) at -525 to -508 and an imperfect inverted repeat 0-type T-3-responsive element (IR0 T3RE) at -436 to -425 which conferred 1,25(OH)(2)D-3 and T3 responsiveness, respectively. In summary, we have identified responsive elements that mediate the enhanced transcription of Nas1 by 1,25-(OH)(2)D-3 and T-3, and these mechanisms may provide important clues to the physiological control of sulfate homeostasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inorganic sulfate is one of the most abundant anions in mammalian plasma and is essential for proper cell growth and development, as well as detoxification and activation of many biological compounds. To date, little is understood how physiological levels of sulfate are maintained in the body. Our studies, and of others, have identified the NAS(i)-1 protein to be a functional sulfate transporter in the kidney and intestine, and due to this localization, constitutes a strong candidate gene for maintaining body sulfate homeostasis. Several factors, including hormones and metabolic conditions, have been shown to alter NAS(i)-1 mRNA and protein levels in vivo. In this study, we describe the transcriptional regulation of NaSi-1, with a focus on the mouse NaSi-1 gene (Nas1) that was recently cloned in our laboratory. Vitamin D (1,25-(OH)(2)D-3) and thyroid hormone (T-3) led to an increase in Nas1 promoter activity in OK cells. Mutational analysis of the Nas1 promoter resulted in identification of a direct repeat 6-type vitamin-D-responsive element (DR6 VDRE) at -525 to -508 and an imperfect inverted repeat 0-type T-3 responsive element (IRO T3RE) at -426 to -425 which conferred 1,25-(OH)(2)D-3 and T-3 responsiveness respectively. These findings suggest for vitamin D and thyroid hormone regulation of NaSi-1, may provide important clues to the physiological control of sulfate homeostasis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the first steps of reverse transcription of the retroviral genome, sequences present at the extremities of the RNA are used to reconstitute a host cell PolII promoter. The assembly of the promoter occurs by template switching, which takes advantage of a direct repeat at the ends of the RNA molecule. These steps are catalysed by the viral reverse transcriptase, which carries an intrinsic RNaseH activity that is probably also involved therein. To study the role of the RNaseH activity in this first template-switching event, an in vitro system has been developed based on primer extensions of synthetic RNAs. When an RNA was reverse transcribed with wild-type reverse transcriptase in the presence of a second RNA the 3' part of which was repeated at the 5' end of the first one, extension products could be observed corresponding to a chimeric cDNA comprising both RNA species. This template switching could not be detected when a mutant reverse transcriptase lacking the RNaseH activity was used. The results show that the RNaseH activity is needed to remove the 5' RNA sequences from the cDNA:RNA hybrid thereby enabling its translocation to another RNA containing an appropriate complementary target sequence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptor (PPAR) is a member of the steroid hormone receptor superfamily and is activated by a variety of fibrate hypolipidaemic drugs and non-genotoxic rodent hepatocarcinogens that are collectively termed peroxisome proliferators. A key marker of peroxisome proliferator action is the peroxisomal enzyme acyl CoA oxidase, which is elevated about ten fold in the livers of treated rodents. Additional peroxisome proliferator responsive genes include other peroxisomal beta-oxidation enzymes and members of the cytochrome P450 IVA family. A peroxisome proliferator response element (PPRE), consisting of an almost perfect direct repeat of the sequence TGACCT spaced by a single base pair, has been identified in the upstream regulatory sequences of each of these genes. The retinoid X receptor (RXR) forms a heterodimer with PPAR and binds to the PPRE. Furthermore, the RXR ligand, 9-cis retinoic acid, enhances PPAR action. Retinoids may therefore modulate the action of peroxisome proliferators and PPAR may interfere with retinoid action, perhaps providing one mechanism to explain the toxicity of peroxisome proliferators. Interestingly, a variety of fatty acids can activate PPAR supporting the suggestion that fatty acids, or their acyl CoA derivatives, may be the natural ligands of PPAR and that the physiological role of PPAR is to regulate fatty acid homeostasis. Taken together, the discovery of PPAR has opened up new opportunities in understanding how lipid homeostasis is regulated, how the fibrate hypolipidaemic drugs may act and should lead to improvements in the assessment of human risk from peroxisome proliferators based upon a better understanding of their mechanism of action.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The three subtypes of the peroxisome proliferator-activated receptors (PPARalpha, beta/delta, and gamma) form heterodimers with the 9-cis-retinoic acid receptor (RXR) and bind to a common consensus response element, which consists of a direct repeat of two hexanucleotides spaced by one nucleotide (DR1). As a first step toward understanding the molecular mechanisms determining PPAR subtype specificity, we evaluated by electrophoretic mobility shift assays the binding properties of the three PPAR subtypes, in association with either RXRalpha or RXRgamma, on 16 natural PPAR response elements (PPREs). The main results are as follows. (i) PPARgamma in combination with either RXRalpha or RXRgamma binds more strongly than PPARalpha or PPARbeta to all natural PPREs tested. (ii) The binding of PPAR to strong elements is reinforced if the heterodimerization partner is RXRgamma. In contrast, weak elements favor RXRalpha as heterodimerization partner. (iii) The ordering of the 16 natural PPREs from strong to weak elements does not depend on the core DR1 sequence, which has a relatively uniform degree of conservation, but correlates with the number of identities of the 5'-flanking nucleotides with respect to a consensus element. This 5'-flanking sequence is essential for PPARalpha binding and thus contributes to subtype specificity. As a demonstration of this, the PPARgamma-specific element ARE6 PPRE is able to bind PPARalpha only if its 5'-flanking region is exchanged with that of the more promiscuous HMG PPRE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three classes of thyroid hormone response elements have been described. They are composed of two half-sites arranged either as a palindromic, a direct repeat or as an inverted palindromic array. Receptor homodimers as well as heterodimers can bind to all three types of response element. While the ligand binding domain of the receptors provides the major dimerization surface, asymmetric contacts between the DNA binding domains are necessary for binding to a direct repeat. Moreover, some recent findings suggest that in TR, compared to RXR, the ligand binding domain has a 180 degrees rotation with respect to the DNA binding domain. This feature could explain the preferential binding of the RXR-TR heterodimer to the direct repeat response element, in which RXR exclusively binds the 5' half-site, and of the TR homodimer to the inverted palindrome response element.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A repeated DNA element in Xenopus laevis is described that is present in about 7500 copies dispersed throughout the genome. It was first identified in the 5' flanking region of one vitellogenin gene and was therefore named the Vi element. Seven copies are present within the vitellogenin gene region, three of them within introns of the genes A1, A2 and B2, and the other four copies in the gene flanking regions. Four of these copies have been sequenced. The Vi element is bounded by a well-conserved 13 base-pair inverted repeat; in addition, it is flanked by a three base-pair direct repeat that appears to be site-specific. The length of these four copies varies from 112 to 469 base-pairs; however, sequence homology between the different copies is very high. Their structural characteristics suggest that length heterogeneity may have arisen by either unequal recombinations, deletions or tandem duplications. Altogether, the characteristics and properties of the Vi element indicate that it might represent a mobile genetic element. One of the four copies sequenced is inserted close (position -535) to the transcription initiation site of the vitellogenin gene B2 in a region otherwise showing considerable homology with the closely related gene B1. Nevertheless, the presence of the Vi element does not seem to influence significantly the estrogen-controlled expression of gene B2. In addition, three alleles of this gene created by length polymorphism in intron 3 and in the Vi element inserted near the transcription initiation site are described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The malic enzyme (ME) gene is a target for both thyroid hormone receptors and peroxisome proliferator-activated receptors (PPAR). Within the ME promoter, two direct repeat (DR)-1-like elements, MEp and MEd, have been identified as putative PPAR response elements (PPRE). We demonstrate that only MEp and not MEd is able to bind PPAR/retinoid X receptor (RXR) heterodimers and mediate peroxisome proliferator signaling. Taking advantage of the close sequence resemblance of MEp and MEd, we have identified crucial determinants of a PPRE. Using reciprocal mutation analyses of these two elements, we show the preference for adenine as the spacing nucleotide between the two half-sites of the PPRE and demonstrate the importance of the two first bases flanking the core DR1 in 5'. This latter feature of the PPRE lead us to consider the polarity of the PPAR/RXR heterodimer bound to its cognate element. We demonstrate that, in contrast to the polarity of RXR/TR and RXR/RAR bound to DR4 and DR5 elements respectively, PPAR binds to the 5' extended half-site of the response element, while RXR occupies the 3' half-site. Consistent with this polarity is our finding that formation and binding of the PPAR/RXR heterodimer requires an intact hinge T region in RXR while its integrity is not required for binding of the RXR/TR heterodimer to a DR4.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The peroxisome proliferator-activated receptors (PPARs) are members of the steroid/thyroid nuclear receptor superfamily of ligand-activated transcription factors. To date, three isotypes have been identified, alpha, beta and gamma, encoded by three different genes. The alpha isotype is expressed at high levels in the liver where it has a role in lipid oxidation. Its expression and activity follow a diurnal rhythm that parallels the circulating levels of corticosterone in the bloodstream. The gamma isotype on the other hand, is mainly expressed in adipose tissue and has a critical role in adipocyte differentiation and lipid storage. The function of the ubiquitously expressed isotype, PPAR beta, remains to be determined. Besides fulfilling different roles in lipid metabolism, the different PPAR isotypes also have different ligand specificities. A new approach to identify ligands was developed based on the ligand-dependent interaction of PPAR with the recently characterized co-activator SRC-1. This so-called CARLA assay has allowed the identification of fatty acids and eicosanoids as PPAR ligands. Although the evidence clearly links PPAR isotypes to distinct functions, the molecular basis for this isotype-specificity is still unclear. All three isotypes are able to bind the same consensus response element, formed by a direct repeat of two AGGTCA hexamers separated by one base, though with different affinities. We recently demonstrated that besides the core DR-1 element, the 5' flanking sequence should be included in the definition of a PPRE. Interestingly, the presence of this flanking sequence is of particular importance in the context of PPAR alpha binding. Moreover, it reflects the polarity of the PPAR-RXR heterodimer on DNA, with PPAR binding to the 5' half-site and RXR binding to the 3' half-site. This unusual polarity may confer unique properties to the bound heterodimer with respect to ligand binding and interaction with co-activators and corepressors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While there is evidence that the two ubiquitously expressed thyroid hormone (T3) receptors, TRalpha1 and TRbeta1, have distinct functional specificities, the mechanism by which they discriminate potential target genes remains largely unexplained. In this study, we demonstrate that the thyroid hormone response elements (TRE) from the malic enzyme and myelin basic protein genes (METRE and MBPTRE) respectively, are not functionally equivalent. The METRE, which is a direct repeat motif with a 4-base pair gap between the two half-site hexamers binds thyroid hormone receptor as a heterodimer with 9-cis-retinoic acid receptor (RXR) and mediates a high T3-dependent activation in response to TRalpha1 or TRbeta1 in NIH3T3 cells. In contrast, the MBPTRE, which consists of an inverted palindrome formed by two hexamers spaced by 6 base pairs, confers an efficient transactivation by TRbeta1 but a poor transactivation by TRalpha1. While both receptors form heterodimers with RXR on MBPTRE, the poor transactivation by TRalpha1 correlates also with its ability to bind efficiently as a monomer. This monomer, which is only observed with TRalpha1 bound to MBPTRE, interacts neither with N-CoR nor with SRC-1, explaining its functional inefficacy. However, in Xenopus oocytes, in which RXR proteins are not detectable, the transactivation mediated by TRalpha1 and TRbeta1 is equivalent and independent of a RXR supply, raising the question of the identity of the thyroid hormone receptor partner in these cells. Thus, in mammalian cells, the binding characteristics of TRalpha1 to MBPTRE (i.e. high monomer binding efficiency and low transactivation activity) might explain the particular pattern of T3 responsiveness of MBP gene expression during central nervous system development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The recently discovered apolipoprotein AV (apoAV) gene has been reported to be a key player in modulating plasma triglyceride levels. Here we identify the hepatocyte nuclear factor-4 (HNF-4 ) as a novel regulator of human apoAV gene. Inhibition of HNF-4 expression by small interfering RNA resulted in down-regulation of apoAV. Deletion, mutagenesis, and binding assays revealed that HNF-4 directly regulates human apoAV promoter through DR1 [a direct repeat separated by one nucleotide (nt)], and via a novel element for HNF-4 consisting of an inverted repeat separated by 8 nt (IR8). In addition, we show that the coactivator peroxisome proliferator-activated receptor- coactivator-1 was capable of stimulating the HNF-4 -dependent transactivation of apoAV promoter. Furthermore, analyses in human hepatic cells demonstrated that AMP-activated protein kinase (AMPK) and the MAPK signaling pathway regulate human apoAV expression and suggested that this regulation may be mediated, at least in part, by changes in HNF-4 . Intriguingly, EMSAs and mice with a liver-specific disruption of the HNF-4 gene revealed a species-distinct regulation of apoAV by HNF-4 , which resembles that of a subset of HNF-4 target genes. Taken together, our data provide new insights into the binding properties and the modulation of HNF-4 and underscore the role of HNF-4 in regulating triglyceride metabolism.