975 resultados para Direct measurement


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using differential x-ray absorption spectroscopy (DiffXAS) we have measured and quantified the intrinsic, atomic-scale magnetostriction of Fe(81)Ga(19). By exploiting the chemical selectivity of DiffXAS, the Fe and Ga local environments have been assessed individually. The enhanced magnetostriction induced by the addition of Ga to Fe was found to originate from the Ga environment, where lambda(gamma,2)(approximate to (3/2)lambda(100)) is 390 +/- 40 ppm. In this environment, < 001 > Ga-Ga pair defects were found to exist, which mediate the magnetostriction by inducing large strains in the surrounding Ga-Fe bonds. For the first time, intrinsic, chemically selective magnetostrictive strain has been measured and quantified at the atomic level, allowing true comparison with theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we demonstrate field-induced Bose-Einstein condensation (BEC) in the organic compound NiCl(2)-4SC(NH(2))(2) using ac susceptibility measurements down to 1 mK. The Ni S=1 spins exhibit 3D XY antiferromagnetism between a lower critical field H(c1)similar to 2 T and a upper critical field H(c2)similar to 12 T. The results show a power-law temperature dependence of the phase transition line H(c1)(T)-H(c1)(0)=aT(alpha) with alpha=1.47 +/- 0.10 and H(c1)(0)=2.053 T, consistent with the 3D BEC universality class. Near H(c2), a kink was found in the phase boundary at approximately 150 mK.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that the short-range spin correlator < S(i)center dot S(j)>, a fundamental measure of the interaction between adjacent spins, can be directly measured in certain insulating magnets. We present magnetostriction data for the insulating organic compound NiCl(2)-4SC(NH(2))(2), and show that the magnetostriction as a function of field is proportional to the dominant short-range spin correlator. Furthermore, the constant of proportionality between the magnetostriction and the spin correlator gives information about the spin-lattice interaction. Combining these results with the measured Young's modulus, we are able to extract dJ/dz, the dependence of the superexchange constant J on the Ni interionic distance z.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of frequency-resolved optical gating is used to characterize the intensity and the phase of picosecond pulses after propagation through 700 m of fiber at close to the zero-dispersion wavelength. Using the frequency-resolved optical gating technique, we directly measure the severe temporal distortion resulting from the interplay between self-phase modulation and higher-order dispersion in this regime. The measured intensity and phase of the pulses after propagation are found to be in good agreement with the predictions of numerical simulations with the nonlinear Schrodinger equation. (C) 1997 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: Several attempts to determine the transit time of a high dose rate (HDR) brachytherapy unit have been reported in the literature with controversial results. The determination of the source speed is necessary to accurately calculate the transient dose in brachytherapy treatments. In these studies, only the average speed of the source was measured as a parameter for transit dose calculation, which does not account for the realistic movement of the source, and is therefore inaccurate for numerical simulations. The purpose of this work is to report the implementation and technical design of an optical fiber based detector to directly measure the instantaneous speed profile of a (192)Ir source in a Nucletron HDR brachytherapy unit. Methods: To accomplish this task, we have developed a setup that uses the Cerenkov light induced in optical fibers as a detection signal for the radiation source moving inside the HDR catheter. As the (192)Ir source travels between two optical fibers with known distance, the threshold of the induced signals are used to extract the transit time and thus the velocity. The high resolution of the detector enables the measurement of the transit time at short separation distance of the fibers, providing the instantaneous speed. Results: Accurate and high resolution speed profiles of the 192Ir radiation source traveling from the safe to the end of the catheter and between dwell positions are presented. The maximum and minimum velocities of the source were found to be 52.0 +/- 1.0 and 17.3 +/- 1:2 cm/s. The authors demonstrate that the radiation source follows a uniformly accelerated linear motion with acceleration of vertical bar a vertical bar = 113 cm/s(2). In addition, the authors compare the average speed measured using the optical fiber detector to those obtained in the literature, showing deviation up to 265%. Conclusions: To the best of the authors` knowledge, the authors directly measured for the first time the instantaneous speed profile of a radiation source in a HDR brachytherapy unit traveling from the unit safe to the end of the catheter and between interdwell distances. The method is feasible and accurate to implement on quality assurance tests and provides a unique database for efficient computational simulations of the transient dose. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3483780]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An acceleration compensated transducer was developed to enable the direct measurement of skin friction in hypervelocity impulse facilities. The gauge incorporated a measurement and acceleration element that employed direct shear of a piezoelectric ceramic. The design integrated techniques to maximize rise time and shear response while minimizing the affects of acceleration, pressure, heat transfer, and electrical interference. The arrangement resulted in a transducer natural frequency near 40 kHz. The transducer was calibrated for shear and acceleration in separate bench tests and was calibrated for pressure within an impulse facility. Uncertainty analyses identified only small experimental errors in the shear and acceleration calibration techniques. Although significant errors were revealed in the method of pressure calibration, total skin-friction measurement errors as low as +/-7-12% were established. The transducer was successfully utilized in a shock tunnel, and sample measurements are presented for flow conditions that simulate a flight Mach number near 8.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation to obtain a Master degree in Biotechnology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The D0 Collaboration presents first evidence for the production of single top quarks at the Fermilab Tevatron < p(p)over bar > collider. Using a 0.9 fb(-1) dataset, we apply a multivariate analysis to separate signal from background and measure sigma(< p(p)over bar >-> tb+X,tqb+X)=4.9 +/- 1.4 pb. The probability to measure a cross section at this value or higher in the absence of a signal is 0.035%, corresponding to a 3.4 standard deviation significance. We use the cross section measurement to directly determine the Cabibbo-Kobayashi-Maskawa matrix element that describes the Wtb coupling and find 0.68

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a measurement of the mass difference between t and t̄ quarks in lepton+jets final states of tt̄ events in 1fb-1 of data collected with the D0 detector from Fermilab Tevatron Collider pp̄ collisions at s=1.96TeV. The measured mass difference of 3.8±3.7GeV is consistent with the equality of t and t̄ masses. This is the first direct measurement of a mass difference between a quark and its antiquark partner. © 2009 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noninvasive blood flow measurements based on Doppler ultrasound studies are the main clinical tool for studying the cardiovascular status in fetuses at risk for circulatory compromise. Usually, qualitative analysis of peripheral arteries and, in particular clinical situations such as severe growth restriction or volume overload, also of venous vessels close to the heart or of flow patterns in the heart are being used to gauge the level of compensation in a fetus. Quantitative assessment of the driving force of the fetal circulation, the cardiac output, however, remains an elusive goal in fetal medicine. This article reviews the methods for direct and indirect assessment of cardiac function and explains new clinical applications. Part 1 of this review describes the concept of cardiac function and cardiac output and the techniques that have been used to quantify output. Part 2 summarizes the use of arterial and venous Doppler studies in the fetus and gives a detailed description of indirect measures of cardiac function (like indices derived from the duration of segments of the cardiac cycle) with current examples of their application.