998 resultados para Direct Seeding
Resumo:
As part of a larger study evaluating several silvicultural techniques for restoring tropical moist forests on abandoned agricultural lands in southeastern Brazil, direct seeding with five early-successional Atlantic forest species was tested at three degraded sites, characterized by different soil types and land-use histories, within the Environmental Protection Area at Botucatu, SP. The species used in this study were Chorisia speciosa, Croton floribundus, Enterolobium contorstisiliquum, Mimosa scabrella, and Schizolobium parahyba. Scarified seeds of each of these species were sown in prepared seed spots in replicated, 0.25 ha mixed-species plots at an initial espacement of 1 m x 1 m at each site. of the five species planted, only two, Enterolobium and Schizolobium, showed good seed germination, seedling survival, and early growth rates, averaging 4.1-4.6 cm stem diameter and 1.5-1.7 m height growth during the first 2 years after sowing. These two species constituted 88-100% of the total stand density, which ranged from 1050 to 1790 stems ha(-1) at 2 years. Despite the poor performance of the other species tested, we observed that the natural regeneration of native forest species originating from remnant forests in the general vicinity of our study sites was significantly greater within the direct-seeded plots than in unplanted control plots that were protected from fire and other disturbances. Published by Elsevier B.V. B.V.
Resumo:
In conservation agriculture, mainly under direct seeding, maintaining the vegetation ground cover is essential, since this serves as a reservoir of nutrients which are slowly released to plants by microorganisms. Some authors have sought to study increases in the amount of straw in the soil, in addition to slowing down the process of decomposition, with hormesis being one of the techniques used. This technique states that all chemical substances are both poisonous and nonpoisonous, with only the dosage determining whether they are lethal or not. This study aimed to evaluate the dry weight and agronomic characteristics of a crop of black oat subjected to hormesis. The experimental design was of randomised blocks, with 12 treatments and 4 replications, giving a total of 48 experimental lots. The treatments were: Haloxyfop-R Methyl Ester at dosages of 0.625, 1.25 and 2.50 g ha(-1); Glyphosate at dosages of 12.50, 25.00 and 50.00 g ha-1; 2,4-D dimethylamine salt at dosages of 100.00, 200.00 and 300.00 g ha(-1); Alterbane at a dosage of 500.00 g ha(-1); Salicylic acid at a dose of 100 g ha(-1); and a control. It was concluded that for the subdosages under test, the herbicides 2,4-D at medium dosage and Verdict at low dosage were shown to be the best treatments for conserving straw as ground cover under direct seeding.
Resumo:
Natural regeneration in Pinus pinea stands commonly fails throughout the Spanish Northern Plateau under current intensive regeneration treatments. As a result, extensive direct seeding is commonly conducted to guarantee regeneration occurrence. In a period of rationalization of the resources devoted to forest management, this kind of techniques may become unaffordable. Given that the climatic and stand factors driving germination remain unknown, tools are required to understand the process and temper the use of direct seeding. In this study, the spatio-temporal pattern of germination of P. pinea was modelled with those purposes. The resulting findings will allow us to (1) determine the main ecological variables involved in germination in the species and (2) infer adequate silvicultural alternatives. The modelling approach focuses on covariates which are readily available to forest managers. A two-step nonlinear mixed model was fitted to predict germination occurrence and abundance in P. pinea under varying climatic, environmental and stand conditions, based on a germination data set covering a 5-year period. The results obtained reveal that the process is primarily driven by climate variables. Favourable conditions for germination commonly occur in fall although the optimum window is often narrow and may not occur at all in some years. At spatial level, it would appear that germination is facilitated by high stand densities, suggesting that current felling intensity should be reduced. In accordance with other studies on P. pinea dispersal, it seems that denser stands during the regeneration period will reduce the present dependence on direct seeding.
Resumo:
Bibliography: pages 62-67.
Resumo:
"August 1997."
Resumo:
Reforestation in tropical areas is usually attempted by planting seedlings but, direct seeding (the artificial addition or sowing of seed) may be an alternative way of accelerating forest recovery and successional processes. This study investigated the effects of various sowing treatments (designed to create different microsite conditions for seed germination) and seed sizes on the early establishment and growth of directly sown rainforest tree species in a variety of experimental plots at three sites in the wet tropical region of north-cast Queensland, Australia. The different sowing treatments were found to have significant effects on seedling establishment. Broadcast sowing treatments were ineffective and resulted in very poor seedling establishment and high seed wastage. Higher establishment rates occurred when seeds were buried. Seed size was found to be an important factor affecting establishment in relation to micro-site condition. In general, larger seeded species had higher establishment rates at all three sites than species of small and intermediate seed size, but only in sowing treatments where seeds were buried. Overall these results suggest that direct sowing of seed can be used as a too] to accelerate recolonisation of certain rainforest tree species on degraded tropical lands, but initial success will be dependent on the choice of sowing method and its suitability for the seed types selected. The results also indicate that the recruitment of naturally dispersed tree species at degraded sites is likely to be severely limited by the availability of suitable microsites for seed germination. Consequently the natural recovery of degraded sites via seed rain can be expected to be slow and unpredictable, particularly in areas where soil compaction has occurred. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
2016
Resumo:
Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm 615 cm, 25 cm 617 cm, 25 cm 619 cm, 25 cm 621 cm, and 25 cm 623 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm615 cm to 25 cm623 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm617 cm to 25 cm623 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm 617 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm617 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice
Resumo:
The adoption of dry direct seeding of rice in many Asian countries has resulted in increased interest among weed scientists to improve weed management strategies, because of the large and complex weed flora associated with dry-seeded rice (DSR). Tillage and cover cropping practices can be integrated into weed management strategies as these have been known to affect weed emergence for several ecological reasons. A study was conducted in the summer seasons of 2012 and 2013 at the Punjab Agricultural University, Ludhiana, India, to evaluate the effects of tillage, cover cropping, and herbicides on weed growth and grain yield of DSR. Most of the weed species (Echinochloa crus-galli, Echinochloa colona, Eleusine indica, and Euphorbia hirta) under study tended to populate the cover crop (CC) treatment more than the no-cover crop (no-CC) treatment. Zero tillage (ZT) resulted in higher weed densities of most of the weed species studied. The interaction effects of these treatments suggest that lesser herbicide efficacy in ZT and CC plots led to higher weed pressure and weed biomass. Grain yield was significantly higher in the conventional tillage system (2.40–3.32 t ha−1), because of lesser weed pressure, than in ZT (2.08–2.73 t ha−1). Almost all weed species increased in number and biomass production in the second year (2013) compared with the preceding year. Herbicide application (pendimethalin followed by bispyribac-sodium) alone, though significantly increased DSR grain yield over that of the unsprayed check, resulted in lesser grain yield compared with the weed-free check (5.07–5.12 t ha−1) by 14% and 27% in 2012 and 2013, respectively. This was mainly due to the buildup of biomass by weeds that escaped from herbicide application. The study reveals that conservation practices such as ZT can form an important component of integrated weed management in DSR, provided that herbicide efficacy be improved by adjusting rate and time of herbicide application in such systems.
Resumo:
Rice production symbolizes the single largest land use for food production on the Earth. The significance of this cereal as a source of energy and income seems overwhelming for millions of people in Asia, representing 90% of global rice production and consumption. Estimates indicate that the burgeoning population will need 25% more rice by 2025 than today's consumption. As the demand for rice is increasing, its production in Asia is threatened by a dwindling natural resource base, socioeconomic limitations, and uncertainty of climatic optima. Transplanting in puddled soil with continuous flooding is a common method of rice crop establishment in Asia. There is a dire need to look for rice production technologies that not only cope with existing limitations of transplanted rice but also are viable, economical, and secure for future food demand.Direct seeding of rice has evolved as a potential alternative to the current detrimental practice of puddling and nursery transplanting. The associated benefits include higher water productivity, less labor and energy inputs, less methane emissions, elimination of time and edaphic conflicts in the rice-wheat cropping system, and early crop maturity. Realization of the yield potential and sustainability of this resource-conserving rice production technique lies primarily in sustainable weed management, since weeds have been recognized as the single largest biological constraint in direct-seeded rice (DSR). Weed competition can reduce DSR yield by 30-80% and even complete crop failure can occur under specific conditions. Understanding the dynamics and outcomes of weed-crop competition in DSR requires sound knowledge of weed ecology, besides production factors that influence both rice and weeds, as well as their association. Successful adoption of direct seeding at the farmers' level in Asia will largely depend on whether farmers can control weeds and prevent shifts in weed populations from intractable weeds to more difficult-to-control weeds as a consequence of direct seeding. Sustainable weed management in DSR comprises all the factors that give DSR a competitive edge over weeds regarding acquisition and use of growth resources. This warrants the need to integrate various cultural practices with weed control measures in order to broaden the spectrum of activity against weed flora. A weed control program focusing entirely on herbicides is no longer ecologically sound, economically feasible, and effective against diverse weed flora and may result in the evolution of herbicide-resistant weed biotypes. Rotation of herbicides with contrasting modes of action in conjunction with cultural measures such as the use of weed-competitive rice cultivars, sowing time, stale seedbed technique, seeding rate, crop row spacing, fertilizer and water inputs and their application method/timing, and manual and mechanical hoeing can prove more effective and need to be optimized keeping in view the type and intensity of weed infestation. This chapter tries to unravel the dynamics of weed-crop competition in DSR. Technological issues, limitations associated with DSR, and opportunities to combat the weed menace are also discussed as a pragmatic approach for sustainable DSR production. A realistic approach to secure yield targets against weed competition will combine the abovementioned strategies and tactics in a coordinated manner. This chapter further suggests the need of multifaceted and interdisciplinary research into ecologically based weed management, as DSR seems inevitable in the near future.
Resumo:
To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha−1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha−1) was generally lower than TP (8.58 t ha−1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS.
Resumo:
A importância das florestas na mitigação do clima é reconhecida e a necessidade da conservação e restauração se tornou mais evidente. Diversas técnicas tem sido estudadas para facilitar a restauração. Nesse sentido, a semeadura direta se apresenta como uma alternativa de baixo custo para a restauração, entretanto o sucesso dessa técnica depende da criação de condições favoráveis para a germinação e estabelecimento de plântulas. O objetivo desse estudo foi avaliar os efeitos de técnicas que podem ser associadas à semeadura direta, aumentando a chance de sucesso. Dois diferentes tipos de protetores (gaiolas metálicas e bambus) foram utilizadas para avaliar a germinação e estabelecimento de Euterpe edulis Mart., uma espécie de sementes recalcitrante. Além disso, outros fatores foram considerados, como o tamanho da semente, presença dos envoltórios do fruto e posição de semeadura. A porcentagem de persistência de sementes ou frutos, germinação (%), emergência de plântulas (%), altura e diâmetro do colo das plântulas e recrutamento foram avaliados no primeiro experimento e germinação (%), emergência de plântulas (%), altura e recrutamento foram avaliados no segundo experimento. A exclusão da redação nãofoi o fator mais importante no sucesso do uso da semente, mas sim a mudança microclimática provocada pela proteção de tubos de bambu. Para a outra espécie estudada, Simira cf. glaziovii (Standl) Steyerm, uma espécie de sementes não recalcitrantes, técnicas de condicionamento foram utilizadas para avaliar a viabilidade e manutenção da qualidade fisiológica após três meses de armazenamento. Os tratamentos consistiram em hidrocondicionamento e osmocondicionamento e estes, seguidos por secagem e armazenamento. O controle também foi armazenado para comparação entre os tratamentos. Os resultados foram favoráveis tanto para condicionamento quanto para o armazenamento após condicionamento. Este estudo mostrou que a semeadura direta pode ser uma alternativa para ambas espécies quando associadas a práticas que favorecem a germinação e estabelecimento. O sucesso no uso das sementes recalcitrantes depende da criação de condições climáticas favoráveis, que podem ser conseguidas com o uso de protetores de tubos de bambu. Para espécies não recalcitrantes, a manutenção da viabilidade das sementes durante o armazenamento permite o uso em períodos mais favoráveis à germinação.