1000 resultados para Dirac interaction
Resumo:
Natural scales determine the physics of quantum few-body systems with short-range interactions. Thus, the scaling limit is found when the ratio between the scattering length and the interaction range tends to infinity, while the ratio between the physical scales are kept fixed. From the formal point of view, the relation of the scaling limit and the renormalization aspects of a few-body model with a zero-range interaction, through the derivation of subtracted three-body T-matrix equations that are renormalization-group invariant.
Resumo:
The mean-square radii of the triatomic molecules 4He 3, 4He 2- 6Li, 4He 2- 7Li, and 4He 2- 23Na were calculated using a renormalized three-body model with a pairwise Dirac-δ interaction, having as physical inputs only the values of the binding energies of the diatomic and triatomic molecules. Molecular three-body systems with bound subsystems were considered. The resultant data were analyzed in detail.
Resumo:
Spintronics, or spin electronics, is aimed at efficient control and manipulation of spin degrees of freedom in electron systems. To comply with demands of nowaday spintronics, the studies of electron systems hosting giant spin-orbit-split electron states have become one of the most important problems providing us with a basis for desirable spintronics devices. In construction of such devices, it is also tempting to involve graphene, which has attracted great attention because of its unique and remarkable electronic properties and was recognized as a viable replacement for silicon in electronics. In this case, a challenging goal is to lift spin degeneracy of graphene Dirac states. Here, we propose a novel pathway to achieve this goal by means of coupling of graphene and polar-substrate surface states with giant Rashba-type spin-splitting. We theoretically demonstrate it by constructing the graphene@BiTeCl system, which appears to possess spin-helical graphene Dirac states caused by the strong interaction of Dirac and Rashba electrons. We anticipate that our findings will stimulate rapid growth in theoretical and experimental investigations of graphene Dirac states with real spin-momentum locking, which can revolutionize the graphene spintronics and become a reliable base for prospective spintronics applications.
Resumo:
The concept of short range strong spin-two (f) field (mediated by massive f-mesons) and interacting directly with hadrons was introduced along with the infinite range (g) field in early seventies. In the present review of this growing area (often referred to as strong gravity) we give a general relativistic treatment in terms of Einstein-type (non-abelian gauge) field equations with a coupling constant Gf reverse similar, equals 1038 GN (GN being the Newtonian constant) and a cosmological term λf ƒ;μν (ƒ;μν is strong gravity metric and λf not, vert, similar 1028 cm− is related to the f-meson mass). The solutions of field equations linearized over de Sitter (uniformly curves) background are capable of having connections with internal symmetries of hadrons and yielding mass formulae of SU(3) or SU(6) type. The hadrons emerge as de Sitter “microuniverses” intensely curved within (radius of curvature not, vert, similar10−14 cm).The study of spinor fields in the context of strong gravity has led to Heisenberg's non-linear spinor equation with a fundamental length not, vert, similar2 × 10−14 cm. Furthermore, one finds repulsive spin-spin interaction when two identical spin-Image particles are in parallel configuration and a connection between weak interaction and strong gravity.Various other consequences of strong gravity embrace black hole (solitonic) solutions representing hadronic bags with possible quark confinement, Regge-like relations between spins and masses, connection with monopoles and dyons, quantum geons and friedmons, hadronic temperature, prevention of gravitational singularities, providing a physical basis for Dirac's two metric and large numbers hypothesis and projected unification with other basic interactions through extended supergravity.
Resumo:
It has been noted that at high energy the Ricci scalar is manifested in two different ways, as a matter field as well as a geometrical field (which is its usual nature even at low energy). Here, using the material aspect of the Ricci scalar, its interaction with Dirac spinors is considered in four-dimensional curved spacetime. We find that a large number of fermion-antifermion pairs can be produced by the exponential expansion of the early universe.
Resumo:
On the basis of previous work, the hyperfine-induced 3s3p P-3(2) -> 3s(2) S-1(0) E1 transition probabilities of Mg-like ions were further calculated using the GRASP2K package based on the multiconfiguration Dirac-Hartree-Fock method. The contribution to the lifetime of the P-3(2) level from the 3s3p P-3(2) -> 3s(2) S-1(0) hyperfine-induced E1, 3s3p P-3(2) -> 3s3p P-3(1) M1, 3s3p P-3(2) -> 3s(2) S-1(0) M2 and 3s3p P-3(2) -> 3s3p P-3(0,1) E2 transition was discussed in detail. It was found that hyperfine interaction has an obvious effect on the lifetime at the beginning of the Mg-like isoelectronic sequence.
Resumo:
We have employed the Dirac R -matrix method to determine electron-impact excitation cross sections and effective collision strengths in Ne-like Kr 26+ . Both the configuration-interaction expansion of the target and the close-coupling expansion employed in the scattering calculation included 139 levels up through n = 5. Many of the cross sections are found to exhibit very strong resonances, yet the effects of radiation damping on the resonance contributions are relatively small. Using these collisional data along with multi-configuration Dirac–Fock radiative rates, we have performed collisional-radiative modeling calculations to determine line-intensity ratios for various radiative transitions that have been employed for diagnostics of other Ne-like ions.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We investigate the spin of the electron in a non-relativistic context by using the Galilean covariant Pauli-Dirac equation. From a non-relativistic Lagrangian density, we find an appropriate Dirac-like Hamiltonian in the momentum representation, which includes the spin operator in the Galilean covariant framework. Within this formalism, we show that the total angular momentum appears as a constant of motion. Additionally, we propose a non-minimal coupling that describes the Galilean interaction between an electron and the electromagnetic field. Thereby, we obtain, in a natural way, the Hamiltonian including all the essential interaction terms for the electron in a general vector field.
Resumo:
We analyze here the spin and pseudospin symmetry for the antinucleon spectra solving the Dirac equation with scalar and vector Wood-Saxon potentials. In relativistic nuclear mean field theories where these potentials have large magnitudes and opposite signs we show that contrary to the nucleon case where pseudospin interaction is never very small and cannot be treated perturbatively, for antinucleon systems this interaction is perturbative and an exact pseudospin symmetry is possible. This result manifests the relativistic nature of the nuclear pseudospin symmetry. © 2009 American Institute of Physics.