927 resultados para Dipolar Cycloaddition reactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis entitled novel 1,3-dipolar cycloaddition reactions of acyclic carbonyl ylides and related chemistry embodies the results of the investigations carried out to explore the reactivity of acyclic carbonyl ylides,generated by the reaction of dicarbomethoxy carbine and aldehydes towards dipolarophiles such as activated styrenes,1,2-and 1,4-quinones. In conclusion ,we have explored the reactivity pattern of acyclic carbonyl ylides derived from dicarbomethoxycarbene and aldehyde towards activated styrenes with a view to develop a stereoselective synthesis of highly substituted tetrahydrofuran derivatives. It was also found that the ylide could be trapped by various 1,2-and 1,4-diones to form dioxolane derivatives. It is noteworthy that the cycloaddition is highly region- and stereoselective. With isatins the ylide preferentially adds to the more electrone deficient carbonyl group making it regiospecific. Hetrocyclic compounds are of pivotal importance in organic chemistry, and enormous efforts have been devoted to develop new methodologies for their synthesis. It is noteworthy in this context that, 1,3-dipolar cycloaddition reaction,otherwise called Huisgen reaction, constitutes one of the most efficient methods for the synthesis of five membered heterocycles. Among the various dipoles, carbonyl ylides have received substiancial attention in recent years largely due to their utility in the synthesis of a wide range of oxygen hetrocycles, which are often found as structural subunits of many bioactive natural products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In first part we have developed a simple regiocontrolled protocol of 1,3-DC to get ring fused pyrazole derivatives. These pyrazole derivatives were synthesized using 1,3-DC between nitrile imine and various dipolarophiles such as alkynes, cyclic α,β-ketones, lactones, thiocatones and lactums. The reactions were found to be highly regiospecific. In second part we have discussed about helicene, its properties, synthesis and applications as asymmetric catalyst.Due to inherent chirality, herein we have made an attempt to synthesize the helicene-thiourea based catalyst for asymmetric catalysis. The synthesis involved formation of two key intermediates viz, bromo-phenanthrene 5 and a vinyl-naphthalene 10. The coupling of these two intermediates leads to formation of hexahelicene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The silver-catalysed multicomponent reaction between ethyl glyoxylate, 2,2-dimethoxyacetaldehyde, or phenylglyoxal as aldehyde components with a α-amino ester hydrochloride and a dipolarophile in the presence of triethylamine is described. This domino process takes place at room temperature by in situ liberation of the α-amino ester followed by the formation of the imino ester, which is the precursor of a metalloazomethine ylide. The cycloaddition of this species and the corresponding dipolarophile affords polysubstituted proline derivatives. Ethyl glyoxylate reacts with glycinate, alaninate, phenylalaninate and phenylglycinate at room temperature in the presence of representative dipolarophiles affording endo-2,5-cis-cycloadducts in good yields and high diastereoselection. In addition, 2,2-dimethoxyacetaldehyde is evaluated with the same amino esters and dipolarophiles, under the same mild conditions, generating the corresponding endo-2,5-cis-cycloadducts with higher diastereoselections than the obtained in the same reactions using ethyl glyoxylate. In the case of phenylglyoxal the corresponding 5-benzoyl-endo-2,5-cis cycloadducts are obtained in short reaction times and similar diasteroselection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the thesis entitled " Novel Strategies for Heterocyclic Constructions via 1 ,4-Dipolar Intermediates"Synthesis of a complex organic molecules essentially involves the formation of carbon-carbon and carbon-heteroatom bonds. Various synthetic methods are available for these processes involving ionic, pericyclic and radical reactions. Among the pericyclic reactions, dipolar cycloaddition reactions, introduced by Huisgen, have emerged as a very powerful tool for heterocyclic construction. Heterocyclic compounds remain an important class of organic molecules due to their natural abundance and remarkable biological activity, thus constituting an intergral part of pharmaceutical industry. In this respect, developing newer synthetic methodology for heterocyclic construction has been an area of immense interest. In recent years, 1,3-dipolar cycloaddition reactions proved to be efficient routes to a wide variety of five membered heterocycles, as attested by their application in the total synthesis of various complex organic molecules. However, the potential application of similar 1,4- dipolar cycloaddition reactions for the construction of six memebered heterocycles remained underexploited. In this context, a systematic investigation of the reactivity of 1,4-dipoles generated from nitrogen heterocycles (pyridine and its analogues) and dimethyl acetylenedicarboxy!ate (DMAD) towards various dipolarophiles has been carried out and the results are embodied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The [2+2+2] cycloaddition reaction involves the formation of three carbon-carbon bonds in one single step using alkynes, alkenes, nitriles, carbonyls and other unsaturated reagents as reactants. This is one of the most elegant methods for the construction of polycyclic aromatic compounds and heteroaromatic, which have important academic and industrial uses. The thesis is divided into ten chapters including six related publications. The first study based on the Wilkinson’s catalyst, RhCl(PPh3)3, compares the reaction mechanism of the [2+2+2] cycloaddition process of acetylene with the cycloaddition obtained for the model of the complex, RhCl(PH3)3. In an attempt to reduce computational costs in DFT studies, this research project aimed to substitute PPh3 ligands for PH3, despite the electronic and steric effects produced by PPh3 ligands being significantly different to those created by PH3 ones. In this first study, detailed theoretical calculations were performed to determine the reaction mechanism of the two complexes. Despite some differences being detected, it was found that modelling PPh3 by PH3 in the catalyst helps to reduce the computational cost significantly while at the same time providing qualitatively acceptable results. Taking into account the results obtained in this earlier study, the model of the Wilkinson’s catalyst, RhCl(PH3)3, was applied to study different [2+2+2] cycloaddition reactions with unsaturated systems conducted in the laboratory. Our research group found that in the case of totally closed systems, specifically 15- and 25-membered azamacrocycles can afford benzenic compounds, except in the case of 20-membered azamacrocycle (20-MAA) which was inactive with the Wilkinson’s catalyst. In this study, theoretical calculations allowed to determine the origin of the different reactivity of the 20-MAA, where it was found that the activation barrier of the oxidative addition of two alkynes is higher than those obtained for the 15- and 25-membered macrocycles. This barrier was attributed primarily to the interaction energy, which corresponds to the energy that is released when the two deformed reagents interact in the transition state. The main factor that helped to provide an explanation to the different reactivity observed was that the 20-MAA had a more stable and delocalized HOMO orbital in the oxidative addition step. Moreover, we observed that the formation of a strained ten-membered ring during the cycloaddition of 20-MAA presents significant steric hindrance. Furthermore, in Chapter 5, an electrochemical study is presented in collaboration with Prof. Anny Jutand from Paris. This work allowed studying the main steps of the catalytic cycle of the [2+2+2] cycloaddition reaction between diynes with a monoalkyne. First kinetic data were obtained of the [2+2+2] cycloaddition process catalyzed by the Wilkinson’s catalyst, where it was observed that the rate-determining step of the reaction can change depending on the structure of the starting reagents. In the case of the [2+2+2] cycloaddition reaction involving two alkynes and one alkene in the same molecule (enediynes), it is well known that the oxidative coupling may occur between two alkynes giving the corresponding metallacyclopentadiene, or between one alkyne and the alkene affording the metallacyclopentene complex. Wilkinson’s model was used in DFT calculations to analyze the different factors that may influence in the reaction mechanism. Here it was observed that the cyclic enediynes always prefer the oxidative coupling between two alkynes moieties, while the acyclic cases have different preferences depending on the linker and the substituents used in the alkynes. Moreover, the Wilkinson’s model was used to explain the experimental results achieved in Chapter 7 where the [2+2+2] cycloaddition reaction of enediynes is studied varying the position of the double bond in the starting reagent. It was observed that enediynes type yne-ene-yne preferred the standard [2+2+2] cycloaddition reaction, while enediynes type yne-yne-ene suffered β-hydride elimination followed a reductive elimination of Wilkinson’s catalyst giving cyclohexadiene compounds, which are isomers from those that would be obtained through standard [2+2+2] cycloaddition reactions. Finally, the last chapter of this thesis is based on the use of DFT calculations to determine the reaction mechanism when the macrocycles are treated with transition metals that are inactive to the [2+2+2] cycloaddition reaction, but which are thermally active leading to new polycyclic compounds. Thus, a domino process was described combining an ene reaction and a Diels-Alder cycloaddition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The compound [Pd(bzan)(mu -N-3)](2) 1, bzan = benzylideneaniline, was prepared from [Pd(bzan) (mu -OOCCH3)](2) by an anion exchange reaction. The 1,3-dipolar cycloaddition of carbon disulfide to the bridged coordinated azide in the cyclometallated compound I was investigated. The species resulting from this reaction, di(mu -N,S-1,2,3,4-thiatriazol-5-thiolate)bis[(benzylideneaniline)palladium(II)] 2, was characterized by IR spectroscopy and X-ray diffraction. The compound 2 is a dimer containing two [Pd(benzylideneaniline)] moieties connected by two vicinal bridging N,S-1,2,3,4-thiatriazole-5-thiolate anions in a square-planar coordination geometry for the palladium atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four liquid crystals (LC) 3,7a-bis(4-alkyloxyphenyl)-7,7a-dihydro-6H-isoxazolo[2,3-d][1,2,4]oxadiazol-6-yl)acetic acid (7a-d) were synthesised and the mesomorphic behaviour reported. The LCs were characterised as 2: 1 bisadducts, which were obtained from a double [3+2] 1,3-dipolar cycloaddition. In the first step, the cycloaddition of 4-alkyloxyphenylnitrile oxide (4a-d) and vinylacetic acid (5) gave the initial unobserved 1:1 cycloadducts 2-[3-(4-alkyloxyphenyl)-4,5-dihydroisoxazol-5-yl]acetic acid (6a-d). In the second step, the addition of a second equivalent of 4 to 6 yielded the 2: 1 bisadducts 7a-d without any traces of 6. All compounds 7a-d were unstable during the transition from the mesophase to the isotropic state upon first heating as evidenced by the large peaks in the differential scanning calorimetry traces. Due to the chemical instability of the compounds upon heating, the transition temperature related to the smectic C to smectic A transitions was acquired by means of an image processing method. X-Ray diffraction experiments were also used to analyse the liquid-crystalline phases. A theoretical calculation was performed using density functional theory (DFT) methods at the PBE1PBE/6-311+G(2d,p) level (with solvent effect) in order to get information about the energetic profile of the 2: 1 cycloaddition. DFT studies revealed that the cycloaddition process is controlled by the HOMO(dipolarophile) - LUMO(1,3-dipole), and that the double [3+2] 1,3-dipolar cycloaddition reaction is quite possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reaction of 3-methyl-2-phenylpyrrocoline(I) and dimethyl acetylenedicarboxylate(II) in refluxing toluene furnishes cis-7',8-dihydro.4,5,8,9-tetramethoxycarbonyl-7'-phenyl-7' -methylazocino(2,1,8-cd]pyrrolizine (III) and trans-7',8-dihydro-4,5,8,9-tetramethoxycarbonyl-7-phenyl-7'-methylazocino[2,1,8-cd]pyrrolizine (IV), while the same reaction at ambient temperature yields 1-[(1,2-trans-dimethoxycarbonyl)vinyl]-3-methyl-2-phenylpyrrocoline (V) and 1-[(1,2-cis-di(methoxycarbonyl)vinyl)--methyl-2- phenylpyirocoUne (V) and 1-[(I,2-cis-di(methoxycarbonyl)Yinyl]-3-metbyl-2-phenylpyrrocoline(VI) as the major products. The structure of IV has been determined by X-ray crystallography.A possible mechanism of formation of these products is also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetics of 1,3-dipolar cycloaddition involving azomethine ylides, generated from thermal [1,2]-prototropy of the corresponding imino ester, employing differential scanning calorimetry (DSC), is surveyed. Glycine and phenylalanine derived imino esters have different behavior. The first one prefers reacting with itself at 75 ºC, rather than with the dipolarophile. However, the α-substituted imino ester gives the cycloadduct at higher temperatures. The thermal dynamic analysis by 1H NMR of the neat reaction mixture of the glycine derivative reveals the presence of signals corresponding to the dipole in very small proportion. The non-isothermal and isothermal DSC curves of the cycloaddition of phenylalaninate and diisobutyl fumarate are obtained from freshly prepared samples. The application of known kinetic models and mathematical multiple non-linear regressions (NLR) allow to determine and to compare Ea, lnA, reaction orders, and reaction enthalpy. Finally a rate equation for each different temperature can be established for this particular thermal cycloaddition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binap-AgSbF6 catalyzed 1,3-dipolar cycloadditions between azomethine ylides and electrophilic alkenes are described and compared with analogous transformations mediated by other Binap-silver(I) salt complexes. Maleimides and 1,2-bis(phenylsulfonyl)ethylene are suitable dipolarophiles for obtaining very good enantioselectivities, even better values are generated by a multicomponent version. There are some very interesting applications of the disulfonylated cycloadducts in the total synthesis of cis-2,5-disubstituted pyrrolidines, precursors of natural products, or valuable intermediates in the synthesis of antiviral compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal multicomponent 1,3-dipolar cycloaddition (1,3-DC) of diethyl aminomalonate or α-amino esters (derived from glycine, alanine, phenylalanine, and phenylglycine) with ethyl glyoxylate and the corresponding dipolarophile such as maleimides, methyl acrylate, methyl fumarate, (E)-1,2-bis(phenylsulfonyl)ethylene, and electron deficient alkynes allows the diastereoselective synthesis of new polysubstituted pyrrolidine derivatives. Microwave-assisted heating processes give better results than conventional heating ones, affording endo-cycloadducts as major stereoisomers. In general, 2,5-cis-cycloadducts are preferentially formed according to the previous formation of the W-shaped dipole. Only in the 1,3-DC of the disulfone with phenylglycine and ethyl glyoxylate the corresponding exo-trans-cycloadduct was isolated. The compound endo-cis-4b, derived from phenylalanine, ethyl glyoxylate and N-benzylmaleimide, has been further transformed into a very complex diazabicyclo[2.2.1]octane skeleton with potential biological activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chiral complexes formed by phosphoramidites such as (Sa,R,R)-9 and Cu(OTf)2 are excellent catalysts for the general 1,3-dipolar cycloaddition between azomethine ylides and nitroalkenes affording the corresponding tetrasubstituted proline esters mainly as exo-cycloadducts in high er at room temperature. The exo-cycloadducts can be obtained in enantiomerically pure form just after simple recrystallization. DFT calculations support the stereochemical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of unnatural pyrrolizidines has been studied using a multicomponent-domino process involving proline or 4-hydroxyproline esters, an aldehyde and a dipolarophile. The formation of the iminium salt promotes the 1,3-dipolar cycloaddition affording highly substituted pyrrolizidines under mild conditions and high regio- and diastereoselectivities.