35 resultados para Dipodascus capitatus
Resumo:
As infecções causadas por Dipodascus capitatus são raras e de difícil tratamento. Aqui se relata um caso em paciente com leucemia mielocítica aguda. O isolamento fúngico ocorreu a partir de hemocultura e a identificação fenotípica baseou-se em métodos micológicos clássicos; a identificação genotípica foi realizada através do sequenciamento da região D1/D2 do 26 rDNA. Os testes de suscetibilidade foram realizados através do Etest® e microdiluição em caldo. A antifungicoterapia foi ineficaz, registrando-se óbito da paciente no 17° dia após o diagnóstico. Os autores comparam o caso com relatos similares e discutem a emergência destas infecções bem como suas dificuldades diagnósticas e terapêuticas.
Resumo:
Steam distillation of essential oils of aerial parts of Thymus capitatus and Marrubium vulgare L. collected at North cost of Egypt yielded 0.5% and 0.2%, respectively. Results of Gas chromatography-mass spectrometry analyses of the two samples identified 96.27% and 90.19% of the total oil composition for T. capitatus and M. vulgare, respectively. The two oil samples appeared dominated by the oxygenated constituents (88.22% for T. capitatus and 57.50% for M. vulgare), composed of phenols, mainly carvacrol (32.98%) and thymol (32.82%) in essential oil of T. capitatus, and thymol (34.55%) in essential oil of M. vulgare. It was evaluated the molluscicidal activity of T. capitatus and M. vulgare essential oils on adult and eggs of Biomphalaria alexandrina as well as their mosquitocidal activity on Culex pipiens. The LC50 and LC90 of T. capitatus essential oil against adult snails was 200 and 400 ppm/3hrs, respectively, while for M. vulgare it was 50 and 100 ppm/3hrs, respectively. Moreover, M. vulgare showed LC100 ovicidal activity at 200 ppm/24 hrs while T. capitatus oil showed no ovicidal activity. It was verified mosquitocidal activity, with LC50 and LC90 of 100 and 200 ppm/12hrs respectively for larvae, and 200 and 400 ppm/12hrs respectively for pupae of C. pipiens.
Resumo:
Abstract Essential oils (EO) of eucalyptus (Eucalyptus globulus L.), thymus (Thymus capitatus L.) pirul (Schinus molle L.) were evaluated for their efficacy to control Aspergillus parasiticus and Fusarium moniliforme growth and their ability to produce mycotoxins. Data from kinetics radial growth was used to obtain the half maximal inhibitory concentration (IC50). The IC50 was used to evaluate spore germination kinetic and mycotoxin production. Also, spore viability was evaluated by the MTT assay. All EO had an effect on the radial growth of both species. After 96 h of incubation, thymus EO at concentrations of 1000 and 2500 µL L–1 totally inhibited the growth of F. moniliforme and A. parasiticus, respectively. Eucalyptus and thymus EO significantly reduced spore germination of A. parasiticus. Inhibition of spore germination of F. moniliforme was 84.6, 34.0, and 30.6% when exposed to eucalyptus, pirul, and thymus EO, respectively. Thymus and eucalyptus EO reduced aflatoxin (4%) and fumonisin (31%) production, respectively. Spore viability was affected when oils concentration increased, being the thymus EO the one that reduced proliferation of both fungi. Our findings suggest that EO affect F. moniliforme and A. parasiticus development and mycotoxin production.
Resumo:
We report 5 cases of disseminated infection caused by Blastoschizomyces capitatus yeast in central Switzerland. The emergence of this yeast in an area in which it is not known to be endemic should alert clinicians caring for immunocompromised patients outside the Mediterranean region to consider infections caused by unfamiliar fungal pathogens.
Resumo:
Il controllo degli artropodi infestanti le derrate in post-raccolta si basa principalmente sull’utilizzo di molecole chimiche di sintesi. I loro residui – spesso presenti nei prodotti alimentari finiti – hanno destato nell’opinione pubblica crescenti preoccupazioni di ordine igienico sanitario. Anche la legislazione Europea – dal canto suo – impone limiti restrittivi alla loro presenza nei cibi e al loro uso. Nell’ambito delle tecniche alternative ai pesticidi di sintesi, gli oli essenziali mostrano interessanti potenzialità per il controllo degli insetti. Il lavoro svolto in questa tesi si è proposto di valutare l’efficacia insetticida di due oli essenziali commerciali, estratti da Cannabis sativa L. e Coridothymus capitatus (L.) Rchb. f., nel controllo di Tribolium castaneum Herbst, uno degli insetti più dannosi delle derrate. La loro caratterizzazione chimica ha permesso di individuare alcune molecole che presumibilmente sono responsabili dell’azione tossica nei confronti del coleottero. I risultati ottenuti mostrano un’attività insetticida di entrambi gli oli essenziali in condizione di temperatura modificata. All’interno di un moderno protocollo di lotta integrata agli insetti, gli oli essenziali potranno effettivamente rappresentare uno tra i diversi ausili tecnici alternativi agli insetticidi di sintesi, che puntino a ridurre al minimo la presenza di residui chimici nei prodotti alimentari.
Resumo:
A total of 24 male and female equines of mixed breed, 10-20 months of age and naturally infected with internal parasites was utilized in a controlled test to evaluate the efficacy of a moxidectin 2% gel formulation at the dosage of 0.4 mg moxidectin per kg of live weight and an ivermectin 1.87% commercial paste formulation at the dosage 0.2 mg ivermectin per kg applied orally Animals were allocated into three groups of eight horses each based on pre-treatment eggs per gram (EPG) counts and treatments were randomized among the groups. One group was kept as untreated controls. One animal in the moxidectin-treated group died before the end of the trial from a cause unrelated to treatment leaving a total of seven animals in this group. Fecal egg counts were performed three times post-treatment and the number of parasites remaining in each animal was determined. Statistical analyses using geometric means were performed at the 1% level of significance. Both moxidectin and ivermectin preparations reduced initial EPG from a mean of 1600 to 0 on Days 5, 7 and at the end of the trial on Day 14. Efficacy percentages of moxidectin and ivermectin against immature and adult nematodes were as follows: Trichostrongylus axel, Parascaris equorum, Strongylus edentatus, S. vulgaris, Triodontophorus spp. and Gyalocephalus capitatus, 100% for both products; Habronema muscae 99.5 and 99.6%, respectively, Strongyloides westeri, 100 and 99.2%, respectively; Oxyuris equi, 99.6 and 100%, respectively; small strongyles, 99.7% for both products. of the latter, the most numerous were: Cylicocyclus insigne, Cylicostephanus longibursatus and Cyathostomum catinatum. No Gasterophilus nasalis were found in horses from either treated group, while two of eight control horses had infections with this parasite. Moxidectin showed greater efficacy (84.9%) than ivermectin (67.8%) against Strongylus vulgaris larvae found in the mesenteric artery aneurisms, but the difference was not statistically significant. Total parasite counts for both treated groups were significantly lower (p<0.01) than in the non-treated group. No significant differences were noted between moxidectin and ivermectin. Efficacy against the 30 nematode species found in this study was very evident for both products. As expected, neither moxidectin nor ivermectin was effective in controlling the tapeworm Anoplocephala perfoliata. No adverse reactions were observed during the experimental period. (C) 1998 Elsevier B.V. B.V. All rights reserved.
Resumo:
Dinoflagellate cysts, pollen, and spores were studied from 78 samples of the Eocene to Miocene section of ODP Site 643 at the outer Wring Plateau. Dinoflagellate cysts ranging from less than 1,000 to rarely over 30,000 per gram of sediment in the Paleogene, and generally between 50,000 and 100,000 in the Miocene were present. The shift to conspicuously higher cyst frequencies takes place in the lowermost Miocene section and appears to reflect increased cyst recruitment rather than a change in sedimentation rate. Of the 179 dinoflagellate cyst forms whose ranges were recorded, 129 are known species. Fifteen assemblage zones have been recognized, although the upper Eocene is missing and no substantial lower Eocene was recorded at Site 643. Norwegian Sea and Rockall Plateau zonations were compared with this study. Detailed correlation with existing onshore section zonations was difficult because key zonal species are inadequately represented; however, the middle to upper Miocene zonation established for Denmark is applicable. Pollen and spores occur with relatively low frequencies, and palynodebris is generally absent, in contrast to the observations from DSDP Leg 38. Thirty-nine samples from Eocene to Miocene sediments at Site 642 were studied and correlated with Site 643. A lower Eocene cyst assemblage present in Hole 642D is older than the questionably lower Eocene assemblage from Site 643. Site 642 has a lower Eocene to lower Miocene hiatus.
Resumo:
Oxygen and carbon isotope analyses have been carried out on calcareous skeletons of important recent groups of organisms. Annual temperature ranges and distinct developmental stages can be reconstructed from single shells with the aid of the micro-sampling technique made possible by modern mass-spectrometers. This is in contrast to the results of earlier studies which used bulk sampIes. The skeletons analysed are from Bermuda, the Philippines, the Persian Gulf and the continental margin off Peru. In these environments, seasonal salinity ranges and thus annual variations in the isotopic composition of the water are small. In addition, environmental parameters are weIl documented in these areas. The recognition of seasonal isotopic variations is dependant on the type of calcification. Shells built up by carbonate deposition at the margin, such as molluscs, are suitable for isotopic studies. Analysis is more difficult where chambers are added at the margin of the shell but where older chambers are simultaneously covered by a thin veneer of carbonate e. g. in rotaliid foraminifera. Organisms such as calcareous algae or echinoderms that thicken existing calcareous parts as weIl as growing in length and breadth are the most difficult to analyse. All organisms analysed show temperature related oxygen-isotope fractionation. The most recent groups fractionate oxygen isotopes in accordance with established d18O temperature relationships (Tab. 18, Fig. 42). These groups are deep-sea foraminifera, planktonic foraminifera, serpulids, brachiopods, bryozoa, almost all molluscs, sea urchins, and fish (otoliths). A second group of organisms including the calcareous algae Padina, Acetabularia, and Penicillus, as weIl as barnacles, cause enrichment of the heavy isotope 18O. Finally, the calcareous algae Amphiroa, Cymopolia and Halimeda, the larger foraminifera, corals, starfish, and holothurians cause enrichment of the lighter isotope 16O. Organisms causing non-equilibrium fractionation also record seasonal temperature variations within their skeletons which are reflected in stable-oxygen-isotope patterns. With the exception of the green algae Halimeda and Penicillus, all organisms analysed show lower d13C values than calculated equilibrium values (Tab. 18, Fig. 42). Especially enriched with the lighter isotope 12C are animals such as hermatypic corals and larger foraminifera which exist in symbiosis with other organisms, but also ahermatypic corals, starfish, and holothurians. With increasing age of the organisms, seven different d13C trends were observed within the skeletons. 1) No d13C variations are observed in deep-sea foraminifera presumably due to relatively stable environmental conditions. 2) Lower d13C values occur in miliolid larger foraminifera and are possibly related to increased growth with increasing age of the foraminifera. 3) Higher values are found in planktonic foraminifera and rotaliid larger foraminifera and can be explained by a slowing down of growth with increasing age. 4) A sudden change to lower d13C values at a distinct shell size occurs in molluscs and is possibly caused by the first reproductive event. 5) A low-high-Iow cycle in calcareous algae is possibly caused by variations in the stage of calcification or growth. 6) A positive correlation between d18O and d13C values is found in some hermatypic corals, all ahermatypic corals, in the septa of Nautilus and in the otoliths of fish. In hermatypic corals from tropical areas, this correlation is the result of the inverse relationship between temperature and light caused by summer cloud cover; in other groups it is inferred to be due to metabolic processes. 7) A negative correlation between d18O and d13C values found in hermatypic corals from the subtropics is explained by the sympathetic relationship between temperature and light in these latitudes. These trends show that the carbon isotope fractionation is controlled by the biology of the respective carbonate producing organisms. Thus, the carbon isotope distribution can provide information on the symbiont-host relationship, on metabolic processes and calcification and growth stages during ontogenesis of calcareous marine organisms.
Resumo:
Upper abyssal to lower bathyal benthic foraminifers from ODP Sites 689 (present water depth 2080 m) and 690 (present water depth 2941 m) on Maud Rise (eastern Weddell Sea, Antarctica) are reliable indicators of Maestrichtian through Neogene changes in the deep-water characteristics at high southern latitudes. Benthic foraminiferal faunas were divided into eight assemblages, with periods of faunal change at the early/late Maestrichtian boundary (69 Ma), at the early/late Paleocene boundary (62 Ma), in the latest Paleocene (57.5 Ma), in the middle early Eocene to late early Eocene (55-52 Ma), in the middle middle Eocene (46 Ma), in the late Eocene (38.5 Ma), and in the middle-late Miocene (14.9-11.5 Ma). These periods of faunal change may have occurred worldwide at the same time, although specific first and last appearances of deep-sea benthic foraminifers are commonly diachronous. There were minor faunal changes at the Cretaceous/Tertiary boundary (less than 14?7o of the species had last appearances at Site 689, less than 9% at Site 690). The most abrupt benthic foraminiferal faunal event occurred in the latest Paleocene, when the diversity dropped by 50% (more than 35% of species had last appearances) over a period of less than 25,000 years; after the extinction the diversity remained low for about 350,000 years. The highest diversities of the post-Paleocene occurred during the middle Eocene; from that time on the diversity decreased steadily at both sites. Data on faunal composition (percentage of infaunal versus epifaunal species) suggest that the waters bathing Maud Rise were well ventilated during the Maestrichtian through early Paleocene as well as during the latest Eocene through Recent. The waters appeared to be less well ventilated during the late Paleocene as well as the late middle through early late Eocene, with the least degree of ventilation during the latest Paleocene through early Eocene. The globally recognized extinction of deep-sea benthic foraminifers in the latest Paleocene may have been caused by a change in formational processes of the deep to intermediate waters of the oceans: from formation of deep waters by sinking at high latitudes to formation of deep to intermediate water of the oceans by evaporation at low latitudes. Benthic foraminiferal data (supported by carbon and oxygen isotopic data) suggest that there was a short period of intense formation of warm, salty deep water at the end of the Paleocene (with a duration of about 0.35 m.y.), and that less intense, even shorter episodes might have occurred during the late Paleocene and early Eocene. The faunal record from the Maud Rise sites agrees with published faunal and isotopic records, suggesting cooling of deep to intermediate waters in the middle through late Eocene.
Resumo:
In the late Paleocene to early Eocene, deep sea benthic foraminifera suffered their only global extinction of the last 75 million years and diversity decreased worldwide by 30-50% in a few thousand years. At Maud Rise (Weddell Sea, Antarctica; Sites 689 and 690, palaeodepths 1100 m and 1900 m) and Walvis Ridge (Southeastern Atlantic, Sites 525 and 527, palaeodepths 1600 m and 3400 m) post-extinction faunas were low-diversity and high-dominance, but the dominant species differed by geographical location. At Maud Rise, post-extinction faunas were dominated by small, biserial and triserial species, while the large, thick-walled, long-lived deep sea species Nuttallides truempyi was absent. At Walvis Ridge, by contrast, they were dominated by long-lived species such as N. truempyi, with common to abundant small abyssaminid species. The faunal dominance patterns at the two locations thus suggest different post-extinction seafloor environments: increased flux of organic matter and possibly decreased oxygen levels at Maud Rise, decreased flux at Walvis Ridge. The species-richness remained very low for about 50 000 years, then gradually increased. The extinction was synchronous with a large, negative, short-term excursion of carbon and oxygen isotopes in planktonic and benthic foraminifera and bulk carbonate. The isotope excursions reached peak negative values in a few thousand years and values returned to pre-excursion levels in about 50 000 years. The carbon isotope excursion was about -2 per mil for benthic foraminifera at Walvis Ridge and Maud Rise, and about -4 per mil for planktonic foraminifera at Maud Rise. At the latter sites vertical gradients thus decreased, possibly at least partially as a result of upwelling. The oxygen isotope excursion was about -1.5 per mil for benthic foraminifera at Walvis Ridge and Maud Rise, -1 per mil for planktonic foraminifera at Maud Rise. The rapid oxygen isotope excursion at a time when polar ice-sheets were absent or insignificant can be explained by an increase in temperature by 4-6°C of high latitude surface waters and deep waters world wide. The deep ocean temperature increase could have been caused by warming of surface waters at high latitudes and continued formation of the deep waters at these locations, or by a switch from dominant formation of deep waters at high latitudes to formation at lower latitudes. Benthic foraminiferal post-extinction biogeographical patterns favour the latter explanation. The short-term carbon isotope excursion occurred in deep and surface waters, and in soil concretions and mammal teeth in the continental record. It is associated with increased CaC03-dissolution over a wide depth range in the oceans, suggesting that a rapid transfer of isotopically light carbon from lithosphere or biosphere into the ocean-atmosphere system may have been involved. The rapidity of the initiation of the excursion (a few thousand years) and its short duration (50 000 years) suggest that such a transfer was probably not caused by changes in the ratio of organic carbon to carbonate deposition or erosion. Transfer of carbon from the terrestrial biosphere was probably not the cause, because it would require a much larger biosphere destruction than at the end of the Cretaceous, in conflict with the fossil record. It is difficult to explain the large shift by rapid emission into the atmosphere of volcanogenic CO2, although huge subaerial plateau basalt eruptions occurred at the time in the northern Atlantic. Probably a complex combination of processes and feedback was involved, including volcanogenic emission of CO2, changing circulation patterns, changing productivity in the oceans and possibly on land, and changes in the relative size of the oceanic and atmospheric carbon reservoirs.
Resumo:
Late Maestrichtian to late Eocene bathyal benthic foraminiferal faunas at Sites 752,753, and 754 on Broken Ridge in the eastern Indian Ocean were analyzed as to their stratigraphic distribution of species to clarify the relation between faunal turnovers and paleoceanographic changes. Based on Q-mode factor analysis, eight varimax assemblages were distinguished: the Stensioina beccariiformis assemblage in the upper Maestrichtian to upper Paleocene; the Cibicidoides hyphalus assemblage in the upper Maestrichtian; the Cibicidoides cf. pseudoperlucidus assemblage in the upper Paleocene; the Anomalinoides capitatusldanicus assemblage in the uppermost Paleocene to lower Eocene; the Cibicidoides subspiratus assemblage in the lower Eocene; the Nuttallides truempyi assemblage in the lower and middle Eocene; the Osangularia sp. 1 - Hanzawaia ammophila assemblage in the upper Eocene; and the Lenticulina spp. assemblage in the uppermost Eocene, Oligocene, and lower Miocene. The presence of the Osangularia sp. 1 - Hanzawaia ammophila assemblage is related to the shallowing episode on Broken Ridge (upper bathyal), as a result of the rifting event that occurred in the middle Eocene. The most distinct faunal change (the disappearance of about 37% of the species) occurred between the S. beccariiformis assemblage and the A. capitatusldanicus assemblage, at the end of the upper Paleocene. A. capitatusldanicus, Lenticulina spp., and varied forms of Cibicidoides replaced the Velasco-type fauna at this time. The timing of this event is well correlated with the known age at South Atlantic sites (Thomas, 1990 doi:10.2973/odp.proc.sr.113.123.1990; Kennett and Stott, 1990 doi:10.2973/odp.proc.sr.113.188.1990; Katz and Miller, 1990 doi:10.2973/odp.proc.sr.114.147.1991). The primary cause of the extinction of the Stensioina beccariiformis assemblage is elusive, but may have resulted from the cessation of deep-water formation in the Antarctic (Katz and Miller, 1990), and subsequent arrival of warm saline deep water (Thomas, 1990; Kennett and Stott, 1990). Another possibility may be a weakened influence of high-salinity water formed at the low latitudes such as the Tethys Sea. The extinction event corresponds to the change from higher delta13C values in benthic foraminifers to lower ones. An interpretation of delta13C values is that the eastern Indian deep water, characterized by young and nutrient-depleted water, became old water which was devoid of a supply of new water during the latest Paleocene to early Eocene. Prior to this benthic event, signals of related faunal change were detected in the following short periods: early and late Paleocene, near the boundary of nannofossil Zone CP4, and Zone CP5 of the late Paleocene at Site 752. Among common taxa in the upper Maestrichtian, only seven species disappeared or became extinct at the Cretaceous/ Tertiary boundary at Site 752. The benthic foraminiferal population did not change for up to 2 m above the boundary, in contrast to the rapid decrease of the plankt onic foraminiferal population at the boundary. A decrease in the number of benthic foraminifers occurs after that level, corresponding to an interval of decreased numbers of planktonic foraminifers and higher abundance of volcanic ash. Reduced species diversity (H') suggests a secondary effect attributable to the dissolution of foraminiferal tests. The different responses of planktonic and benthic foraminifers to the event just above the boundary suggest that the Cretaceous/Tertiary event was a surface event as also suggested by Thomas (1990). In addition, a positive shift of delta13C in benthic foraminifers after the event indicates nutrient-depleted bottom water at Site 752.