953 resultados para Diploid males


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Haplodiploidy, where females develop from diploid, fertilized eggs and males from haploid, unfertilized eggs, is abundant in some insect lineages. Some species in these lineages reproduce by thelytoky that is caused by infection with endosymbionts: infected females lay haploid eggs that undergo diploidization and develop into females, while males are very rare or absent. It is generally assumed that in thelytokous wasps, endosymbionts merely diploidize the unfertilized eggs, which would then trigger female development. RESULTS: We found that females in the parasitoid wasp Asobara japonica infected with thelytoky-inducing Wolbachia produce 0.7-1.2 % male offspring. Seven to 39 % of these males are diploid, indicating that diploidization and female development can be uncoupled in A. japonica. Wolbachia titer in adults was correlated with their ploidy and sex: diploids carried much higher Wolbachia titers than haploids, and diploid females carried more Wolbachia than diploid males. Data from introgression lines indicated that the development of diploid individuals into males instead of females is not caused by malfunction-mutations in the host genome but that diploid males are most likely produced when the endosymbiont fails to activate the female sex determination pathway. Our data therefore support a two-step mechanism by which endosymbionts induce thelytoky in A. japonica: diploidization of the unfertilized egg is followed by feminization, whereby each step correlates with a threshold of endosymbiont titer during wasp development. CONCLUSIONS: Our new model of endosymbiont-induced thelytoky overthrows the view that certain sex determination mechanisms constrain the evolution of endosymbiont-induced thelytoky in hymenopteran insects. Endosymbionts can cause parthenogenesis through feminization, even in groups in which endosymbiont-diploidized eggs would develop into males following the hosts' sex determination mechanism. In addition, our model broadens our understanding of the mechanisms by which endosymbionts induce thelytoky to enhance their transmission to the next generation. Importantly, it also provides a novel window to study the yet-poorly known haplodiploid sex determination mechanisms in haplodiploid insects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complementary sex determination in Hymenoptera implies that heterozygosity at the sex locus leads to the development of diploid females, whereas hemizygosity results in haploid males. Diploid males can arise through inbreeding. In social species, these pose a double burden on colony fitness, from significant reduction in its worker force and through being less viable and fertile than haploid males. Apart from being "misfits", diploid males are of interest to assess molecular correlates for possibly ploidy-related bionomic differences. Herein, we generated suppression subtractive cDNA libraries from newly emerged haploid and diploid males of the stingless bee Melipona quadrifasciata to enrich for differentially expressed genes. Gene Ontology classification revealed that in haploid males more DEGs were related to stress responsiveness, biosynthetic processes, reproductive processes and spermatogenesis, whereas in diploid ones differentially expressed genes were associated with cellular organization, nervous system development and amino acid transport were prevalent. Furthermore, both libraries contained over 40 % ESTs representing possibly novel transcripts. Quantitative RT-PCR analyses confirmed the differential expression of a representative DEG set in newly emerged males. Several muscle formation and energy metabolism-related genes were under-expressed in diploid males. On including 5-day-old males in the analysis, changes in transcript abundance during sexual maturation were revealed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Males, queens and workers of stingless bees show differences in external morphology, behaviour and roles within a colony. In addition, each individual has a cuticular chemical signature responsible for mutual communication that is essential for maintaining the integrity of the colony. In this paper we characterize the cuticular hydrocarbon composition of newly emerged diploid and haploid males, workers and virgin queens of Melipona quadrifasciata by gas chromatography-mass spectrometry (GC/MS) analysis. This is the first time that the cuticular profile of diploid males in a species of stingless bee has been characterized. We found differences in the cuticular hydrocarbon composition among males, workers and virgin queens, recording both qualitative and quantitative differences among individuals of different phenotypes. However, no compound was found exclusively in diploid males. The cuticular chemical profiles of haploid and diploid males were very similar to those of workers. Moreover, the cuticular lipids of males and workers were significantly different from those of queens. Tricosane, pentacosene-2 and 7-methyl-heptacosane were the compounds responsible for this significant separation. This result correlates with the behavioural and morphological differences among these phenotypes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stingless bees play an important ecological role as pollinators of many wild plant species in the tropics and have significant potential for the pollination of agricultural crops. Nevertheless, conservation efforts as well as commercial breeding programmes require better guidelines on the amount of genetic variation that is needed to maintain viable populations. In this context, we carried out a long-term genetic study on the stingless bee Melipona scutellaris to evaluate the population viability consequences of prolonged breeding from a small number of founder colonies. In particular, it was artificially imposed a genetic bottleneck by setting up a population starting from only two founder colonies, and continued breeding from it for a period of over 10 years in a location outside its natural area of occurrence. We show that despite a great reduction in the number of alleles present at both neutral microsatellite loci and the sex-determining locus relative to its natural source population, and an increased frequency in the production of sterile diploid males, the genetically impoverished population could be successfully bred and maintained for at least 10 years. This shows that in stingless bees, breeding from a small stock of colonies may have less severe consequences than previously suspected. In addition, we provide a simulation model to determine the number of colonies that are needed to maintain a certain number of sex alleles in a population, thereby providing useful guidelines for stingless bee breeding and conservation efforts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Males in many animal species differ greatly from females in morphology, physiology and behaviour. Ants, bees and wasps have a haplodiploid mechanism of sex determination whereby unfertilized eggs become males while fertilized eggs become females. However, many species also have a low frequency of diploid males, which are thought to develop from diploid eggs when individuals are homozygous at one or more sex determination loci. Diploid males are morphologically similar to haploids, though often larger and typically sterile. To determine how ploidy level and sex-locus genotype affect gene expression during development, we compared expression patterns between diploid males, haploid males and females (queens) at three developmental timepoints in Solenopsis invicta. In pupae, gene expression profiles of diploid males were very different from those of haploid males but nearly identical to those of queens. An unexpected shift in expression patterns emerged soon after adult eclosion, with diploid male patterns diverging from those of queens to resemble those of haploid males, a pattern retained in older adults. The finding that ploidy level effects on early gene expression override sex effects (including genes implicated in sperm production and pheromone production/perception) may explain diploid male sterility and lack of worker discrimination against them during development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Etant données la complexité et la redondance des réseaux de gènes influençant de nombreux phénotypes, l'étude des rares cas d'un locus unique ayant des effets importants sur de nombreux phénotypes peut fournir des informations cruciales sur l'évolution des traits complexes. Nous avons séquencé le génome de la fourmi de feu Solenopsis invicta pour étudier comment l'expression des gènes détermine les effets majeurs et étendus de deux loci uniques sur le phénotype. Le premier locus concerne la détermination du sexe par le modèle des allèles complémentaires. Ce locus est connu pour déterminer le sexe chez tous les hyménoptères mais n'a été caractérisé que chez les abeilles. Les hétérozygotes pour ce locus se développent en reines diploïdes (ou ouvrières stériles) alors que les homozygotes se développent en mâles diploïdes incapables de produire du sperme et les hémizygotes en mâles haploïdes fertiles. Nous avons comparé l'expression des gènes entre les reines et les deux types de mâles au stade pupe, ainsi que 1 et 11 jours après l'émergence. Nous avons trouvé un changement prononcé de l'expression des gènes chez les mâles diploïdes, passant de très proche de celle des reines au stade pupe à identique aux mâles haploïdes 11 jours après l'émergence. Cela signifie que les mâles diploïdes sont condamnés à être stériles parce que les effets après émergence du locus de détermination du sexe ne per¬mettent pas d'effacer les effets de la ploïdie sur l'expression des gènes pendant le stade pupe, quand la spermatogénèse prend place. Le second locus aux effets majeurs que nous avons étudié est le supergène dit "green beard", qui consiste en 616 gènes couvrant 55% d'un chromosome (13 Mb) et est caractérisé par une absence de recombinaison entre les deux variants du supergène : "Social B" et "Social b" (SB et Sb). Au travers de l'effet "green beard", par lequel les ouvrières avec le supergène Sb discriminent favorablement les reines qui partagent ce supergène de façon perceptible, le génotype des reines fondatrices au niveau de ce supergène détermine l'organisation de la colonie : soit elle contient une seule reine SB/SB, soit plusieurs reines SB/Sb. Nous avons montré que le chromosome Sb a évolué comme le chromosome Y, accumulant probablement des allèles favorables dans des colonies avec plusieurs reines mais défavorables dans des colonies avec une seule reine (cf. gènes sexuellement antagonistes), ainsi que des transposons et des séquences répéti¬tives. Nous avons également montré que le polymorphisme du supergène cause de grandes différences d'expression chez les ouvrières et particulièrement les reines mais pas chez les mâles. Pour comprendre comment le polymorphisme du supergène chez les reines peut affecter l'organisation de la colonie, nous avons comparé l'expression entre les génotypes SB/SB et SB/Sb chez des reines vierges (1 et 11 jours) et des reines matures. Nous avons montré que les reines SB/SB sur-régulent des gènes impliqués dans la reproduction, expli-quant pourquoi elle grandissent plus rapidement et peuvent fonder des colonies de façon indépendante, tandis que les reines SB/Sb (qui ne peuvent fonder une nouvelle colonie) sur-régulent des gènes de signalement chimique qui affectent l'organisation des colonies par l'effet "green beard". - Given the complexity and redundancy of the gene networks that underlie many pheno- types, the study of rare cases of a single locus having major effects on many phenotypes can give powerful insights into the evolution of complex traits. We sequenced the genome of Solenopsis invicta fire ants to study how gene expression mediates the widespread major effects of two single loci on phenotype. The first is the complementary sex-determining locus, which is known to exist in most Hymenoptera despite being characterized only for honeybees. Heterozygotes at this locus become diploid queens (or sterile workers), homozy¬gotes become aspermic diploid males, and hemizygotes become fertile haploid males. We compared gene expression between queens and both types of males in pupae and 1 and 11 days after eclosion. We found a pronounced shift in gene expression in diploid males, from being nearly identical to queens as pupae to identical to haploid males 11 days after eclosion. This means that diploid males are condemned to sterility because the overriding effects of the sex locus after eclosion cannot undo the ploidy effects on expression during the pupal stage, when spermatogenesis must be completed. The second locus with major ef¬fects that we studied was the so-called "green beard" supergene, which consists of 616 genes encompassing 55% of one chromosome (13 Mb), without recombination between the two variants "Social B" and "Social b" (SB and Sb) supergene. Through the green beard effect, i.e. workers with the Sb supergene discriminating in favor of queens who perceptibly share this supergene, the founding queen's genotype at the supergene determines colony organi¬zation: either headed by a single SB/SB queen or many SB/Sb queens. We show that the Sb chromosome evolved like a Y-chromosome, probably accumulating alleles beneficial in multi-queen colonies but disadvantageous in single-queen colonies (cf. sexually antagonistic genes), as well as transposons and repetitive sequences. We also show that the polymor¬phism of the supergene causes widespread expression differences in workers and especially queens but not in males. To understand how the polymorphism at the supergene in queen can transform colony organization, we compared the expression between SB/SB and SB/Sb virgin queens (1 and 11 days) and mother queens. We show that SB/SB queens up-regulate genes involved in reproduction, explaining why they mature faster and can found colonies independently, while SB/Sb queens (which cannot found colonies) up-regulate chemical signaling genes that can transform colonies through the green beard effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding levels of population differentiation and inbreeding are important issues in conservation biology, especially for social Hymenoptera with fragmented and small population sizes. Isolated populations are more vulnerable to genetic loss and extinction than those with extended continuous distributions. However, small populations are not always a consequence of a recent reduction of their habitat. Thus, determining the history of population isolation and current patterns of genetic variation of a species is crucial for its conservation. Rossomyrmex minuchae is a slave-making ant with patchy distribution in South Eastern Spain and is classified as vulnerable by the IUCN. In contrast, the other three known species of the genus are presumed to show more uniform distributions. Here we investigate the genetic diversity and population structure of R. minuchae and compare it with that found in two other species of the genus: R. anatolicus and R. quandratinodum. We conclude that although genetic diversity of R. minuchae is low, there is no evidence of a recent bottleneck, suggesting a gradual and natural fragmentation process. We also show extreme population differentiation at nuclear and mitochondrial markers, and isolation by distance at a local scale. Despite some evidence for inbreeding and low genetic variation within populations, we found almost no diploid males, a finding which contrasts with that expected in inbred Hymenoptera with single locus complementary sex determination. This could mean that sex is determined by another mechanism. We argue that continued low population size means that detrimental effects of inbreeding and low genetic variation are likely in the future. We suggest that a policy of artificial gene flow aimed at increasing within population variation is considered as a management option.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first experiments on sex determination in bees began with Dzierzon, Meves, Nachtsheim, Paulcke, Petrunkewitsch, Manning. Whiting, (1943) found multiple alleles in Bracon xo that are the Rosetta stone of sex determination in Hymenoptera. Whiting also discovered that some species of microhymenoptera do not possess xo sex alleles. Therefore, Hymenoptera apparently presents two types of sex determination superimposed on haplodiploidy. In the panmictic groups hemizygous (xo1, xo2,... xon) and homozygous (xo1xo1, xo2xo2... xonxon) are males while heterozygous (xo1xo2, ... xon-1xon) are females. There is no such series of xon in endogamous Hymenoptera, since the constant elimination of diploid males would be damaging to the population and the mutation of xo to xon would be quickly eliminated. Besides the Whiting hypothesis, four others are discussed. The new hypothesis of genomic imprinting, of Beukeboom, is eliminated since: a) spermatozoa that develop within the egg produce male tissue; b) telitokous parthenogenesis due to the fusion of two haploid cells develop into females; c) last instar larvae treated with juvenile hormone become queens. The Cunha and Kerr hypothesis (female determining genes are totally or partially additive and male determination is totally or partially nonadditive) explains all known cases. The xo is a female determining gene. Sex determination in social bees led to the gradual evolution of two systems of caste determination: one in which queens and workers are similar and males are very different (Apinae), and another in which workers and males are very similar and both very different from the queens (Meliponinae). This second system in stingless bees implies that many of the mutations that improve worker capacities also affect the males that will carry out some activities that in Apis are clearly female ones. Ten of these activities are described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Natural polyploidy has played an important role during the speciation and evolution of vertebrates, including anurans, with more than 55 described cases. The species of the Phyllomedusa burmeisteri group are mostly characterized by having 26 chromosomes, but a karyotype with 52 chromosomes was described in P. tetraploidea. This species was found in sintopy with P. distincta in two localities of São Paulo State (Brazil), where triploid animals also occur, as consequence of natural hybridisation. We analyse the chromosomes of P. distincta, P. tetraploidea, and their triploid hybrids, to enlighten the origin of polyploidy and to obtain some evidence on diploidisation of tetraploid karyotype.Results: Phyllomedusa distincta was 2n = 2x = 26, whereas P. tetraploidea was 2n = 4x = 52, and the hybrid individuals was 2n = 3x = 39. In meiotic phases, bivalents were observed in the diploid males, whereas both bivalents and tetravalents were observed in the tetraploid males. Univalents, bivalents or trivalents; metaphase II cells carrying variable number of chromosomes; and spermatids were detected in the testis preparations of the triploid males, indicating that the triploids were not completely sterile. In natural and experimental conditions, the triploids cross with the parental species, producing abnormal egg clutches and tadpoles with malformations. The embryos and tadpoles exhibited intraindividual karyotype variability and all of the metaphases contained abnormal constitutions. Multiple NORs, detected by Ag-impregnation and FISH with an rDNA probe, were observed on chromosome 1 in the three karyotypic forms; and, additionally, on chromosome 9 in the diploids, mostly on chromosome 8 in the tetraploids, and on both chromosome 8 and 9 in the triploids. Nevertheless, NOR-bearing chromosome 9 was detected in the tetraploids, and chromosome 9 carried active or inactive NORs in the triploids. C-banding, base-specific fluorochrome stainings with CMA3 and DAPI, FISH with a telomeric probe, and BrdU incorporation in DNA showed nearly equivalent patterns in the karyotypes of P. distincta, P. tetraploidea, and the triploid hybrids.Conclusions: All the used cytogenetic techniques have provided strong evidence that the process of diploidisation, an essential step for stabilising the selective advantages produced by polyploidisation, is under way in distinct quartets of the tetraploid karyotype. © 2013 Gruber et al.; licensee BioMed Central Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inbreeding can lead to a fitness reduction due to the unmasking of deleterious recessive alleles and the loss of heterosis. Therefore, most sexually reproducing organisms avoid inbreeding, often by disperal. Besides the avoidance of inbreeding, dispersal lowers intraspecific competition on a local scale and leads to a spreading of genotypes into new habitats. In social insects, winged reproductives disperse and mate during nuptial flights. Therafter, queens independently found a new colony. However, some species also produce wingless sexuals as an alternative reproductive tactic. Wingless sexuals mate within or close to their colony and queens either stay in the nest or they found a new colony by budding. During this dependent colony foundation, wingless queens are accompanied by a fraction of nestmate workers. The production of wingless reproductives therefore circumvents the risks associated with dispersal and independent colony foundation. However, the absence of dispersal can lead to inbreeding and local competition.rnIn my PhD-project, I investigated the mating biology of Hypoponera opacior, an ant that produces winged and wingless reproductives in a population in Arizona. Besides the investigation of the annual reproductive cycle, I particularly focused on the consequences of wingless reproduction. An analysis of sex ratios in wingless sexuals should reveal the relative importance of local resource competition among queens (that mainly compete for the help of workers) and local mate competition among males. Further, sexual selection was expected to act on wingless males that were previously found to mate with and mate-guard pupal queens in response to local mate competition. We studied whether males are able to adapt their mating behaviour to the current competitive situation in the nest and which traits are under selection in this mating situation. Last, we investigated the extent and effects of inbreeding. As the species appeared to produce non-dispersive males and queens quite frequently, we assumed to find no or only weak negative effects of inbreeding and potentially mechanisms that moderate inbreeding levels despite frequent nest-matings.rnWe found that winged and wingless males and queens are produced during two separate seasons of the year. Winged sexuals emerge in early summer and conduct nuptial flights in July, when climate conditions due to frequent rainfalls lower the risks of dispersal and independent colony foundation. In fall, wingless sexuals are produced that reproduce within the colonies leading to an expansion on the local scale. The absence of dispersal during this second reproductive season resulted in a local genetic population viscosity and high levels of inbreeding within the colonies. Male-biased sex ratios in fall indicated a greater importance of local resource competition among queens than local mate competition among males. Males were observed to adjust mate-guarding durations to the competitive situation (i.e. the number of competing males and pupae) in the nest, an adaptation that helps maximising their reproductive success. Further, sexual selection was found to act on the timing of emergence as well as on body size in these males, i.e. earlier emerging and larger males show a higher mating success. Genetic analyses revealed that wingless males do not actively avoid inbreeding by choosing less related queens as mating partners. Further, we detected diploid males, a male type that is produced instead of diploid females if close relatives mate. In contrast to many other Hymenopteran species, diploid males were here viable and able to sire sterile triploid offspring. They did not differ in lifespan, body size and mating success from “normal” haploid males. Hence, diploid male production in H. opacior is less costly than in other social Hymenopteran species. No evidence of inbreeding depression was found on the colony level but more inbred colonies invested more resources into the production of sexuals. This effect was more pronounced in the dispersive summer generation. The increased investment in outbreeding sexuals can be regarded as an active strategy to moderate the extent and effects of inbreeding. rnIn summary, my thesis describes an ant species that has evolved alternative reproductive tactics as an adaptation to seasonal environmental variations. Hereby, the species is able to maintain its adaptive mating system without suffering from negative effects due to the absence of dispersal flights in fall.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rise and consequences of polyploidy in vertebrates, whose origin was associated with genome duplications, may be best studied in natural diploid and polyploid populations. In a diploid/tetraploid (2n/4n) geographic contact zone of Palearctic green toads in northern Kyrgyzstan, we examine 4ns and triploids (3n) of unknown genetic composition and origins. Using mitochondrial and nuclear sequence, and nuclear microsatellite markers in 84 individuals, we show that 4n (Bufo pewzowi) are allopolyploids, with a geographically proximate 2n species (B. turanensis) being their maternal ancestor and their paternal ancestor as yet unidentified. Local 3n forms arise through hybridization. Adult 3n mature males (B. turanensis mtDNA) have 2n mothers and 4n fathers, but seem distinguishable by nuclear profiles from partly aneuploid 3n tadpoles (with B. pewzowi mtDNA). These observations suggest multiple pathways to the formation of triploids in the contact zone, involving both reciprocal origins. To explain the phenomena in the system, we favor a hypothesis where 3n males (with B. turanensis mtDNA) backcross with 4n and 2n females. Together with previous studies of a separately evolved, sexually reproducing 3n lineage, these observations reveal complex reproductive interactions among toads of different ploidy levels and multiple pathways to the evolution of polyploid lineages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Separate sexes have evolved on numerous independent occasions from hermaphroditic ancestors in flowering plants. The mechanisms of sex determination is known for only a handful of such species, but, in those that have been investigated, it usually involves alleles segregating at a single locus, sometimes on heteromorphic sex chromosomes. In the genus Mercurialis, transitions between combined (hermaphroditism) and separate sexes (dioecy or androdioecy, where males co-occur with hermaphrodites rather than females) have occurred more than once in association with hybridisation and shifts in ploidy. Previous work has pointed to an unusual 3-locus system of sex determination in dioecious populations. Here, we use crosses and genotyping for a sex-linked marker to reject this model: sex in diploid dioecious M. annua is determined at a single locus with a dominant male-determining allele (an XY system). We also crossed individuals among lineages of Mercurialis that differ in their ploidy and sexual system to ascertain the extent to which the same sex-determination system has been conserved following genome duplication, hybridisation and transitions between dioecy and hermaphroditism. Our results indicate that the male-determining element is fully capable of determining gender in the progeny of hybrids between different lineages. Specifically, males crossed with females or hermaphrodites always generate 1:1 male:female or male:hermaphrodite sex ratios, respectively, regardless of the ploidy levels involved (diploid, tetraploid or hexaploid). Our results throw further light on the genetics of the remarkable variation in sexual systems in the genus Mercurialis. They also illustrate the almost identical expression of sex-determining alleles in terms of sexual phenotypes across multiple divergent backgrounds, including those that have lost separate sexes altogether.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contrasting with birds and mammals, most ectothermic vertebrates present homomorphic sex chromosomes, which might be due either to a high turnover rate or to occasional X-Y recombination. We tested these two hypotheses in a group of Palearctic green toads that diverged some 3.3 million years ago. Using sibship analyses of sex-linked markers, we show that all four species investigated share the same pair of sex chromosomes and a pattern of male heterogamety with drastically reduced X-Y recombination in males. Phylogenetic analyses of sex-linked sequences show that X and Y alleles cluster by species, not by gametolog. We conclude that X-Y homomorphy and fine-scale sequence similarity in these species do not stem from recent sex-chromosome turnovers, but from occasional X-Y recombination.