984 resultados para Diode Rectifier


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel hybrid three-phase rectifier is proposed. It is capable to achieve high input power factor (PF) and low total harmonic input currents distortion (THDI). The proposed hybrid high power rectifier is composed by a standard three-phase six-pulse diode rectifier (Graetz bridge) with a parallel connection of single-phase Sepic rectifiers in each three-phase rectifier leg. Such topology results in a structure capable of programming the input current waveform and providing conditions for obtaining high input power factor and low harmonic current distortion. In order to validate the proposed hybrid rectifier, this work describes its principles, with detailed operation, simulation, experimental results, and discussions on power rating of the required Sepic converters as related to the desired total harmonic current distortion. It is demonstrated that only a fraction of the output power is processed through the Sepic converters, making the proposed solution economically viable for very high power installations, with fast investment payback. Moreover, retrofitting to existing installations is also feasible since the parallel path can be easily controlled by integration with the existing dc-link. A prototype has been implemented in the laboratory and it was fully demonstrated to both operate with excellent performance and be feasibly implemented in higher power applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel hybrid high power rectifier capable to achieve unity power factor is proposed in this paper. Single-phase SEPIC rectifiers are associated in parallel with each leg of three-phase 6-pulse diode rectifier resulting in a programmable input current waveform structure. In this paper it is described the principles of operation of the proposed converter with detailed simulation and experimental results. For a total harmonic distortion of the input line current (THDI) less than 2% the rated power of the SEPIC rectifiers is 33%. Therefore, power rating of the SEPIC parallel converters is a fraction of the output power, on the range of 20% to 33% of the nominal output power, making the proposed solution economically viable for high power installations, with fast pay back of the investment. Moreover, retrofits to existing installations are also possible with this proposed topology, since the parallel path can be easily controlled by integration with the already existing de-link. Experimental results are presented for a 3 kW implemented prototype, in order to verify the developed analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper it is proposed a novel hybrid three-phase rectifier capable to achieve high input power factor (PF), and low total harmonic distortion in the input currents (THDI). The proposed hybrid high power rectifier is composed by a standard three-phase 6-pulses diode rectifier (Graetz bridge) with a parallel connection of single-phase Boost rectifiers in each three-phase rectifier leg. Such topology results in a structure capable of programming the input current waveform and providing conditions for obtaining high input power factor and low harmonic current distortion. In order to validate the proposed hybrid rectifier, this paper describes its principles of operation, with detailed experimental results and discussions on power rating of the required Boost converters as related to the desired total harmonic current distortion. It is demonstrated that only a fraction of the output power is processed through the Boost converters, making the proposed solution economically viable for very high power installations, with fast pay back of the investment. Moreover, retrofitting to existing installations is also feasible since the parallel path can be easily controlled by integration with the existing de-link. A prototype rated at 6 kW has been implemented in laboratory and fully demonstrated its operation, performance and feasibility to high power applications. © 2005 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper is proposed and analyzed a digital hysteresis modulation using a FPGA (Field Programmable Gate Array) device and VHDL (Hardware Description Language), applied at a hybrid three-phase rectifier with almost unitary input power factor, composed by parallel SEPIC controlled single-phase rectifiers connected to each leg of a standard 6-pulses uncontrolled diode rectifier. The digital control allows a programmable THD (Total Harmonic Distortion) at the input currents, and it makes possible that the power rating of the switching-mode converters, connected in parallel, can be a small fraction of the total average output power, in order to obtain a compact converter, reduced input current THD and almost unitary input power factor. The proposed digital control, using a FPGA device and VHDL, offers an important flexibility for the associated control technique, in order to obtain a programmable PFC (Power Factor Correction) hybrid three-phase rectifier, in agreement with the international standards (IEC, and IEEE), which impose limits for the THD of the AC (Alternate Current) line input currents. Finally, the proposed control strategy is verified through experimental results from an implemented prototype. ©2008 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper is proposed and analyzed a digital hysteresis modulation using a FPGA (Field Programmable Gate Array) device and VHDL (Hardware Description Language), applied at a hybrid three-phase rectifier with almost unitary input power factor, composed by parallel SEPIC controlled single-phase rectifiers connected to each leg of a standard 6-pulses uncontrolled diode rectifier. The digital control allows a programmable THD (Total Harmonic Distortion) at the input currents, and it makes possible that the power rating of the switching-mode converters, connected in parallel, can be a small fraction of the total average output power, in order to obtain a compact converter, reduced input current THD and almost unitary input power factor. Finally, the proposed digital control, using a FPGA device and VHDL, offers an important flexibility for the associated control technique, in order to obtain a programmable PFC (Power Factor Correction) hybrid three-phase rectifier, in agreement with the international standards (IEC, and IEEE), which impose limits for the THD of the AC (Alternate Current) line input currents. The proposed strategy is verified by experiments. © 2008 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposal presents the development and the experimental analysis of a new single-phase hybrid rectifier structure with high power factor (PF) and low harmonic distortion of current (THDI), suitable for application in traction systems of electrical vehicles pulled by electrical motors (trolleybus), which are powered by urban distribution network. This front-end rectifier structure is capable of providing significant improvements in trolleybuses systems and in the urban distribution network costs, and efficiency. The proposed structure is composed by an ordinary single-phase diode rectifier with parallel connection of a switched converter. It is outlined that the switched converter is capable of composing the input line current waveform assuring high power factor (HPF) and low THDI, as well as ordinary front-end converter. However, the power rating of the switched converter is about 34% of the total output power, assuring robustness and reliability. Therefore, the proposed structure was named single-phase HPF hybrid rectifier. A prototype rated at 15kW was developed and analyzed in laboratory. It was found that the input line current harmonic spectrum is in accordance with the harmonic limits imposed by IEC61000-3-4. The principle of operation, the mathematical analysis, the PWM control strategy, and experimental results of a 15kW prototype are also presented in this paper. © 2009 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the development and the experimental analysis of a new single-phase hybrid rectifier structure with high power factor (PF) and low harmonic distortion of current (THDI), suitable for application in traction systems of electrical vehicles pulled by electrical motors (trolleybus), which are powered by urban distribution network. This front-end rectifier structure is capable of providing significant improvements in trolleybuses systems and in the urban distribution network costs, and efficiency. The proposed structure is composed by an ordinary single-phase diode rectifier with parallel connection of a switched converter. It is outlined that the switched converter is capable of composing the input line current waveform assuring high power factor (HPF) and low THDI, as well as ordinary front-end converter. However, the power rating of the switched converter is about 34% of the total output power, assuring robustness and reliability. Therefore, the proposed structure was named single-phase HPF hybrid rectifier. A prototype rated at 15kW was developed and analyzed in laboratory. It was found that the input line current harmonic spectrum is in accordance with the harmonic limits imposed by IEC61000-3-4. The principle of operation, the mathematical analysis, the PWM control strategy, and experimental results are also presented in this paper. © 2009 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multipulse rectifier topologies based on autoconnections are increasingly applied as interface stages between mains and power electronics converters. These topologies are attractive and cost-effective solutions for meeting the requirements of low total harmonic distortion of line current and high power factor. Furthermore, as only a small fraction of the total power required by the load is processed in the magnetic core, the overall resulting volume and weight are reduced. This paper proposes a mathematical analysis based on phasor diagrams that results in a single and general expression capable of unifying all delta and wye step-up or step-down autotransformer connections for 12-and 18-pulse ac-dc converters. The expression obtained allows the choice of a wide range of input/output voltage ratio for step-up or step-down autotransformer, and this general expression is also presented in a graphical form for each converter. Moreover, it simplifies the procedure for determining turn ratios and polarities for all windings of the autotransformer. A routine for easy and fast calculations is developed and validated by a design example. Finally, experimental results are presented along with comments on a 6-kW 220-V line voltage, 400-V rectified voltage, and 18-pulse delta-autoconnected prototype.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

IIn electric drives, frequency converters are used to generatefor the electric motor the AC voltage with variable frequency and amplitude. When considering the annual sale of drives in values of money and units sold, the use of low-performance drives appears to be in predominant. These drives have tobe very cost effective to manufacture and use, while they are also expected to fulfill the harmonic distortion standards. One of the objectives has also been to extend the lifetime of the frequency converter. In a traditional frequency converter, a relatively large electrolytic DC-link capacitor is used. Electrolytic capacitors are large, heavy and rather expensive components. In many cases, the lifetime of the electrolytic capacitor is the main factor limiting the lifetime of the frequency converter. To overcome the problem, the electrolytic capacitor is replaced with a metallized polypropylene film capacitor (MPPF). The MPPF has improved properties when compared to the electrolytic capacitor. By replacing the electrolytic capacitor with a film capacitor the energy storage of the DC-linkwill be decreased. Thus, the instantaneous power supplied to the motor correlates with the instantaneous power taken from the network. This yields a continuousDC-link current fed by the diode rectifier bridge. As a consequence, the line current harmonics clearly decrease. Because of the decreased energy storage, the DC-link voltage fluctuates. This sets additional conditions to the controllers of the frequency converter to compensate the fluctuation from the supplied motor phase voltages. In this work three-phase and single-phase frequency converters with small DC-link capacitor are analyzed. The evaluation is obtained with simulations and laboratory measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work was to make an active front end from IGBTs for a multilevel inverter. The work was done for Mosart II, a long term still ongoing Vacon Oyj project. The purpose of the AFE is to balance the DC-voltage and to put the returning power back to the grid instead of the breaking chopper and the capacitor. With a diode rectifier the bridge only allows power to pass in one direction and the switching times are not controllable. That means the rectifier always takes the highest phase and the phases are always conducting the same 120◦. With an AFE it is possible to actively change the rectifiers switching pattern. A diode bridge also generates much greater losses than an IGBT bridge. With these arguments it is rational to start researching the possibility of an AFE in a multilevel inverter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Technical analysis of Low Voltage Direct Current (LVDC) distribution systems shows that in LVDC transmission the customer voltage quality is higher. One of the problems in LVDC distribution networks that converters both ends of the DC line are required. Because of the converters produce not pure DC voltage, but some fluctuations as well, the huge electrolytic capacitors are required to reduce voltage distortions in the DC-side. This thesis master’s thesis is focused on calculating required DC-link capacitance for LVDC transmission and estimation of the influence of different parameters on the voltage quality. The goal is to investigate the methods of the DC-link capacitance estimation and location in the transmission line.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an improved analysis of a novel Programmable Power-factor-corrected-Based Hybrid Multipulse Power Rectifier (PFC-HMPR) for utility interface of power electronic converters. The proposed hybrid multipulse rectifier is composed of an ordinary three-phase six-pulse diode-bridge rectifier (Graetz bridge) with a parallel connection of single-phase switched converters in each three-phase rectifier leg. In this paper, the authors present a complete discussion about the controlled rectifiers' power contribution and also a complete analysis concerning the total harmonic distortion of current that can be achieved when the proposed converter operates as a conventional 12-pulse rectifier. The mathematical analysis presented in this paper corroborate, with detailed equations, the experimental results of two 6-kW prototypes implemented in a laboratory.