968 resultados para Dioctadecyl-dimethyl-ammonium bromide
Resumo:
Dioctadecyl-dimethyl-ammonium bromide (DODAB) vesicles can be characterized by their differential scanning calorimetry (DSC) thermograms comprised of two endotherms at T (s) a parts per thousand 36 A degrees C and T (m) a parts per thousand 45 A degrees C in the heating, ascribed respectively to the subgel-to-gel and gel-to-liquid crystalline transitions, and two exotherms at T'(m) a parts per thousand 40 A degrees C and T'(s) a parts per thousand 16 A degrees C in the cooling, ascribed respectively to the liquid crystalline-to-gel and gel-to-subgel transitions. It has been reported but not proved that the T (m)-transitions, the T'(m)-transitions, the T (s)-transitions, and the T'(s)-transitions are reverse to each other, displaying hystheresis Delta T (m) a parts per thousand 5 A degrees C and Delta T (s) a parts per thousand 20-25 A degrees C, respectively. By investigating the effects of the initial scanning temperature (T (i)) on the transition enthalpies (Delta H (m), Delta H (s), Delta H'(m) and Delta H'(s)), we have seen that these transitions are the reverse to each other and display different kinetics.
Resumo:
In this work, montmorillonite (Mt) has been organically modified with ethyl hexadecyl dimethyl ammonium (EHDDMA) in 20, 50, 80 and 100% of the nominal exchange capacity (CEC) of the Mt. A full characterization of the organo-montmorillonite (OMt) obtained has been made, including thermal analysis, X-Ray Diffraction, elemental analysis CHN and nitrogen adsorption. According to the results, 12% in mass of the surfactant added is strongly retained by the Mt. When the mass percentage of EHDDMA exchanged in the OMt is increased up to this level, the interactions OMt–EHDDMA are steeply reduced depending on the EHDDMA content. Clay polymer nanocomposites (CPN) were prepared by melt mixing of EVA and different loads of OMt. The CPN were compress molded to obtain 1 mm thick sheets, which have been characterized according to their mechanical, thermal and rheological behaviors. The major changes in the structure of the OMt are obtained for low contents of EHDDMA. Nevertheless, the CPN containing OMt exchanged at 20 and 50% of the CEC show relatively low effect of the EHDDMA while the mechanical response and rheological behavior of CPN with OMt modified at 80 and 100% of the CEC are much more pronounced.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The ability of liposomes and microspheres to enhance the efficacy of a sub-unit antigen was investigated. Microspheres were optimised by testing a range of surfactants employed in the external aqueous phase of a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation process for the preparation of microspherescomposed of poly(d,l-lactide-co-glycolide) and the immunological adjuvant dimethyl dioctadecyl ammonium bromide (DDA)and then investigated with regard to the physico-chemical and immunological characteristics of the particles produced. The results demonstrate that this parameter can affect the physico-chemical characteristics of these systems and subsequently, has a substantial bearing on the level of immune response achieved, both humoural and cell mediated, when employed for the delivery of the sub-unit tuberculosis vaccine antigen Ag85B-ESAT-6. Moreover, the microsphere preparations investigated failed to initiate immune responses at the levels achieved with an adjuvant DDA-based liposome formulation (DDA-TDB), further substantiating the superior ability of liposomes as vaccine delivery systems.
Resumo:
The combination of dimethyl dioctadecyl ammonium bromide (DDA) and the synthetic cord factor trehalose dibehenate (TDB) with Ag85B-ESAT-6 (H1 fusion protein) has been found to promote strong protective immune responses against Mycobacterium tuberculosis. The development of a vaccine formulation that is able to facilitate the requirements of sterility, stability and generation of a vaccine product with acceptable composition, shelf-life and safety profile may necessitate selected alterations in vaccine formulation. This study describes the implementation of a sterilisation protocol and the use of selected lyoprotective agents in order to fulfil these requirements. Concomitantly, close analysis of any alteration in physico-chemical characteristics and parameters of immunogenicity have been examined for this promising DDA liposome-based tuberculosis vaccine. The study addresses the extensive guidelines on parameters for non-clinical assessment, suitable for liposomal vaccines and other vaccine delivery systems issued by the World Health Organisation (WHO) and the European Medicines Agency (EMEA). Physical and chemical stability was observed following alteration in formulations to include novel cryoprotectants and radiation sterilisation. Immunogenicity was maintained following these alterations and even improved by modification with lysine as the cryoprotective agent for sterilised formulations. Taken together, these results outline the successful alteration to a liposomal vaccine, representing improved formulations by rational modification, whilst maintaining biological activity.
Resumo:
Hybrid latices of poly(styrene-co-butyl acrylate) were synthesized via in situ miniemulsion polymerization in the presence of 3 and 6 wt % organically modified montmorillonite (OMMT). Three different ammonium salts: cetyl trimethyl ammonium chloride (CTAC), alkyl dimethyl benzyl ammonium chloride (Dodigen), and distearyl dimethyl ammonium chloride (Praepagen), were investigated as organic modifiers. Increased affinity for organic liquids was observed after organic modification of the MMT. Stable hybrid latices were obtained even though miniemulsion stability was disturbed to some extent by the presence of the OMMTs during the synthesis. Highly intercalated and exfoliated polymer-MMT nanocomposites films were produced with good MMT dispersion throughout the polymeric matrix. Materials containing MMT modified with the 16 carbons alkyl chain salt (CTAC) resulted in the largest increments of storage modulus, indicating that single chain quaternary salts provide higher increments on mechanical properties. Films presenting exfoliated structure resulted in the largest increments in the onset temperature of decomposition. For the range of OMMT loading studied, the nanocomposite structure influenced more significantly the thermal stability properties of the hybrid material than did the OMMT loading. The film containing 3 wt % MMT modified with the two 18 carbons alkyl chains salt (Praepagen) provided the highest increment of onset temperature of decomposition. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 119: 3658-3669, 2011
Resumo:
In this work, a sodium montmorillonite (Na+-Mt) was modified with two molecules simultaneously, an organic dye, methylene blue (MB), and ethyl hexadecyl dimethyl ammonium (EHDDMA). The synthesised organo-montmorillonites (OMt) combining different proportions of the two molecules were thoroughly characterised and mixed with ethylene vinyl acetate copolymer (EVA) in order to check the ability of these OMt as pigments and reinforcing additives. The synthesised OMt combining both surfactants, MB and EHDDMA, present higher interlayer distances than those with only MB, which were employed in previous works as nanopigments. When these OMt were incorporated in the EVA matrix, the obtained clay polymer nanocomposites (CPN) showed a high exfoliation degree of the OMt in the polymer, in such a way that at 80% of the cationic exchange capacity (CEC) of the Mt exchanged with EHDDMA, most of the OMt was exfoliated. Moreover, all the obtained CPN showed an increase in the Young's Moduli compared to the EVA reference, and especially those containing higher amounts of MB. The thermal stability of the CPN also increases with the MB content, compared to other CPN including conventional surfactants. The hiding power and colouring power achieved in the CPN are higher even with a much lower load of MB when EHDDMA is exchanged in the Mt.
Resumo:
A simplified C32 monomycolyl glycerol (MMG) analogue demonstrated enhanced immunostimulatory activity in a dioctadecyl ammonium bromide (DDA)/Ag85B-ESAT-6 formulation. Elevated levels of IFN-gamma and IL-6 were produced in spleen cells from mice immunised with a C32 MMG analogue comparable activity to the potent Th1 adjuvant, trehalose 6,6'-di-behenate (TDB).
Resumo:
The aim of this research was to formulate a novel biodegradable, biocompatible cationic microparticle vector for the delivery of DNA vaccines. The work builds upon previous research by Singh et al which described the adsorption of DNA to the surface of poly (D,L-lactide-co-glycolide) (PLG) microparticles stabilised with the surfactant cetyltrimethyl ammonium bromide (CT AB). This work demonstrated the induction of antibody and cellular immune responses to HIV proteins encoded on plasmid DNA adsorbed to the particle surface in mice, guinea pigs and non-human primates (Singh et aI, 2000; O'Hagan et aI, 2001). However, the use of surfactants in microparticle formulations for human vaccination is undesirable due to long term safety issues. Therefore, the present research aim was to develop an adsorbed DNA vaccine with enhanced potency and increased safety compared to CTAB stabilised PLG microparticles (PLG/CTAB) by replacement of the surfactant CTAB with an alternative cationic agent. The cationic polymers chitosan and poly (N- vinylpyrrolidone/2-dimethylaminoethyl methacrylate), dimethyl sulfate quaternary (PVP-PDAEMA) were investigated as alternative stabilisers to CTAB. From a variety of initial formulations, the most promising vector(s) for DNA vaccination were selected based on physicochemical data (chapter 3) and in vitro DNA loading and release characteristics (chapter 4). The chosen formulation(s) were analysed in greater depth (chapters 3 and 4), and gene expression was assessed by in vitro cell transfection studies using 293T kidney epithelial and C2C12 myoblast non-phagocytic cell lines (chapter 5). The cytotoxicity of the microparticles and their constituents were also evaluated in vitro (chapter 5). Stability and suitability of the formulation(s) for commercial production were assessed by cryopreparation and lyophilisation studies (chapters 3 and 4). Gene expression levels in cells of the immune response were evaluated by microparticle transfection of the dendritic cell (DC) line 2.4 and primary bone marrow derived DCs (chapter 6). In vivo, mice were injected i.m. with the formulations deemed most promising on the basis of in vitro studies and humoral and cellular immune responses were evaluated (chapter 6).
Resumo:
Contrary to previously held beliefs, it is now known that bacteria exist not only on the surface of the skin but they are also distributed at varying depths beneath the skin surface. Hence, in order to sterilise the skin, antimicrobial agents are required to penetrate across the skin and eliminate the bacteria residing at all depths. Chlorhexidine is an antimicrobial agent with the widest use for skin sterilisation. However, due to its poor permeation rate across the skin, sterilisation of the skin cannot be achieved and, therefore, the remaining bacteria can act as a source of infection during an operation or insertion of catheters. The underlying theme of this study is to enhance the permeation of this antimicrobial agent in the skin by employing chemical (enhancers and supersaturated systems) or physical (iontophoresis) techniques. The hydrochloride salt of chlorhexidine (CHX), a poorly soluble salt, was used throughout this study. The effect of ionisation on in vitro permeation rate across the excised human epidennis was investigated using Franz-type diffusion cells. Saturated solutions of CHX were used as donor and the variable studied was vehicle pH. Permeation rate was increased with increasing vehicle pH. The pH effect was not related to the level of ionisation of the drug. The effect of donor vehicle was also studied using saturated solutions of CHX in 10% and 20% ethanol as the donor solutions. Permeation of CHX was enhanced by increasing the concentration of ethanol which could be due to the higher concentration of CHX in the donor phase and the effect of ethanol itself on the membrane. The interplay between drug diffusion and enhancer pretreatment of the epidennis was studied. Pretreatment of the membrane with 10% Azone/PG demonstrated the highest diffusion rate followed by 10% olcic acid/PG pretreatment compared to other pretreatment regimens (ethanol, dimethyl sulfoxide (DMSO), propylene glycol (PG), sodium dodecyl sulphate (SDS) and dodecyl trimethyl ammonium bromide (DT AB). Differential Scanning Calorimetry (DSC) was also employed to study the mode of action of these enhancers. The potential of supersaturated solutions in enhancing percutaneous absorption of CHX was investigated. Various anti-nucleating polymers were screened in order to establish the most effective agent. Polyvinylpyrrolidone (PVP, K30) was found to be a better candidate than its lower molecular weight counterpart (K25) and hydroxypropyl methyleellulose (HPMC). The permeation studies showed an increase in diffusion rate by increasing the degree of saturation. Iontophoresis is a physical means of transdemal drug delivery enhancement that causes an increased penetration of molecules into or through the skin by the application of an electric field. This technique was employed in conjunction with chemical enhancers to assess the effect on CHX permeation across the human epidermis. An improved transport of CHX, which was pH dependant was observed upon application of the current. Combined use of iontophoresis and chemical enhancers further increased the CHX transport indicating a synergistic effect. Pretreatment of the membrane with 10% Azone/PG demonstrated the greatest effect.
Resumo:
In this work we report the preparation of a new blue-emitting material based on the templated synthesis of mesoporous silica (MCM-41) using micellar solutions of the newly synthesized monocationic metallosurfactant complex bis[1-benzyl-4-(2,4-difluorophenyl)-1H-1,2,3-triazole](4,4'-diheptadecyl-2,2'- bipyridine)-iridium(III) chloride in hexadecyl-trimethyl-ammonium bromide (CTAB). Under ambient conditions, significant increases in excited state lifetime and quantum yield values (up to 45%), were obtained for the solid materials in comparison to the corresponding micellar solutions. Solid state (1)H and (19)F NMR spectroscopies were successfully employed for quantifying the luminophore content in terms of Ir-surfactant to CTAB and Ir-surfactant to silica ratios.
Resumo:
The doubly positively charged gas-phase molecules BrO(2+) and NBr(2+) have been produced by prolonged high-current energetic oxygen (17 keV (16)O(-)) ion surface bombardment (ion beam sputtering) of rubidium bromide (RbBr) and of ammonium bromide (NH(4)Br) powdered ionic salt samples, respectively, pressed into indium foil. These novel species were observed at half-integer m/z values in positive ion mass spectra for ion flight times of roughly similar to 12 mu s through a magnetic-sector secondary ion mass spectrometer. Here we present these experimental results and combine them with a detailed theoretical investigation using high level ab initio calculations of the ground states of BrO(2+) and NBr(2+), and a manifold of excited electronic states. NBr(2+) and BrO(2+), in their ground states, are long-lived metastable gas-phase molecules with well depths of 2.73 x 10(4) cm(-1) (3.38 eV) and 1.62 x 10(4) cm(-1) (2.01 eV); their fragmentation channels into two monocations lie 2.31 x 10(3) cm(-1) (0.29 eV) and 2.14 x 10(4) cm(-1) (2.65 eV) below the ground state minimum. The calculated lifetimes for NBr(2+) (v '' < 35) and BrO(2+) (v '' < 18) are large enough to be considered stable against tunneling. For NBr(2+), we predicted R(e) = 3.051 a(0) and omega(e) = 984 cm(-1); for BrO(2+), we obtained 3.033 a(0) and 916 cm(-1), respectively. The adiabatic double ionization energies of BrO and NBr to form metastable BrO(2+) and NBr(2+) are calculated to be 30.73 and 29.08 eV, respectively. The effect of spin-orbit interactions on the low-lying (Lambda + S) states is also discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3562121]
Resumo:
The acetohydroxamic acid synthesis reaction was studied using whole cells, cell-free extract and purified amidase from the strains of Pseudomonas aeruginosa L10 and A13 entrapped in a reverse micelles system composed of cationic surfactant tetradecyltrimethyl ammonium bromide. The specific activity of amidase, yield of synthesis and storage stability were determined for the reversed micellar system as well as for free amidase in conventional buffer medium. The results have revealed that amidase solutions in the reverse micelles system exhibited a substantial increase in specific activity, yield of synthesis and storage stability. In fact, whole cells from P. aeruginosa L10 and AI3 in reverse micellar medium revealed an increase in specific activity of 9.3- and 13.9-fold, respectively, relatively to the buffer medium. Yields of approximately 92% and 66% of acetohydroxamic acid synthesis were obtained for encapsulated cell free extract from P. aeruginosa L10 and A13, respectively. On the other hand, the half-life values obtained for the amidase solutions encapsulated in reverse micelles were overall higher than that obtained for the free amidase solution in buffer medium. Half-life values obtained for encapsulated purified amidase from P. aeruginosa strain L10 and encapsulated cell-free extract from P. aeruginosa strain AI3 were of 17.0 and 26.0 days, respectively. As far as the different sources biocatalyst are concerned, the data presented in this work has revealed that the best results, in both storage stability and biocatalytic efficiency, were obtained when encapsulated cell-free extract from P. aeruginosa strain AI3 at 14/0 of 10 were used. Conformational changes occurring upon encapsulation of both strains enzymes in reverse micelles of TAB in heptane/octanol were additionally identified by FTIR spectroscopy which clarified the biocatalysts performances.
Resumo:
Abstract: INTRODUCTION: Before 2004, the occurrence of acute Chagas disease (ACD) by oral transmission associated with food was scarcely known or investigated. Originally sporadic and circumstantial, ACD occurrences have now become frequent in the Amazon region, with recently related outbreaks spreading to several Brazilian states. These cases are associated with the consumption of açai juice by waste reservoir animals or insect vectors infected with Trypanosoma cruzi in endemic areas. Although guidelines for processing the fruit to minimize contamination through microorganisms and parasites exist, açai-based products must be assessed for quality, for which the demand for appropriate methodologies must be met. METHODS: Dilutions ranging from 5 to 1,000 T. cruzi CL Brener cells were mixed with 2mL of acai juice. Four Extraction of T. cruzi DNA methods were used on the fruit, and the cetyltrimethyl ammonium bromide (CTAB) method was selected according to JRC, 2005. RESULTS: DNA extraction by the CTAB method yielded satisfactory results with regard to purity and concentration for use in PCR. Overall, the methods employed proved that not only extraction efficiency but also high sensitivity in amplification was important. CONCLUSIONS: The method for T. cruzi detection in food is a powerful tool in the epidemiological investigation of outbreaks as it turns epidemiological evidence into supporting data that serve to confirm T. cruzi infection in the foods. It also facilitates food quality control and assessment of good manufacturing practices involving acai-based products.