965 resultados para Dinâmica dos fluidos computacional
Resumo:
Fenômenos naturais, tecnológicos e industriais podem, em geral, ser modelados de modo acurado através de equações diferenciais parciais, definidas sobre domínios contínuos que necessitam ser discretizados para serem resolvidos. Dependendo do esquema de discretização utilizado, pode-se gerar sistemas de equações lineares. Esses sistemas são, de modo geral, esparsos e de grande porte, onde as incógnitas podem ser da ordem de milhares, ou até mesmo de milhões. Levando em consideração essas características, o emprego de métodos iterativos é o mais apropriado para a resolução dos sistemas gerados, devido principalmente a sua potencialidade quanto à otimização de armazenamento e eficiência computacional. Uma forma de incrementar o desempenho dos métodos iterativos é empregar uma técnica multigrid. Multigrid são uma classe de métodos que resolvem eficientemente um grande conjunto de equações algébricas através da aceleração da convergência de métodos iterativos. Considerando que a resolução de sistemas de equações de problemas realísticos pode requerer grande capacidade de processamento e de armazenamento, torna-se imprescindível o uso de ambientes computacionais de alto desempenho. Uma das abordagens encontradas na literatura técnica para a resolução de sistemas de equações em paralelo é aquela que emprega métodos de decomposição de domínio (MDDs). Os MDDs são baseados no particionamento do domínio computacional em subdomínios, de modo que a solução global do problema é obtida pela combinação apropriada das soluções obtidas em cada um dos subdomínios Assim, neste trabalho são disponibilizados diferentes métodos de resolução paralela baseado em decomposição de domínio, utilizando técnicas multigrid para a aceleração da solução de sistemas de equações lineares. Para cada método, são apresentados dois estudos de caso visando a validação das implementações. Os estudos de caso abordados são o problema da difusão de calor e o modelo de hidrodinâmica do modelo UnHIDRA. Os métodos implementados mostraram-se altamente paralelizáveis, apresentando bons ganhos de desempenho. Os métodos multigrid mostraram-se eficiente na aceleração dos métodos iterativos, já que métodos que utilizaram esta técnica apresentaram desempenho superior aos métodos que não utilizaram nenhum método de aceleração.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Neste trabalho, foi desenvolvido um simulador numérico baseado no método livre de malhas Smoothed Particle Hydrodynamics (SPH) para a resolução de escoamentos de fluidos newtonianos incompressíveis. Diferentemente da maioria das versões existentes deste método, o código numérico faz uso de uma técnica iterativa na determinação do campo de pressões. Este procedimento emprega a forma diferencial de uma equação de estado para um fluido compressível e a equação da continuidade a fim de que a correção da pressão seja determinada. Uma versão paralelizada do simulador numérico foi implementada usando a linguagem de programação C/C++ e a Compute Unified Device Architecture (CUDA) da NVIDIA Corporation. Foram simulados três problemas, o problema unidimensional do escoamento de Couette e os problemas bidimensionais do escoamento no interior de uma Cavidade (Shear Driven Cavity Problem) e da Quebra de Barragem (Dambreak).
Resumo:
In the present work a simple form to obtain analytical expression for the dynamic permeability of Maxwellian fluids is presented. This expression gives the frequency dependent form of this dynamic permeability. In particular case, the analytic expression for the sinusoidal pressure pump fluid is illustrated in the configuration space. As an example of the feasibility of this expression the flow of human blood in a tube is presented finding that the human heart frequency has the same order that the frequencies where the dynamic permeability shows resonances. In order to make clear the above aspect of the dynamic permeability a model of pulsing pressure drops (gaussian like) are analyzed.
Resumo:
Aquest projecte té com a objectiu la simulació numérica de la carrosseria d’ un vehicle de curses de muntanya de categoria CM
Resumo:
LINS, Filipe C. A. et al. Modelagem dinâmica e simulação computacional de poços de petróleo verticais e direcionais com elevação por bombeio mecânico. In: CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS, 5. 2009, Fortaleza, CE. Anais... Fortaleza: CBPDPetro, 2009.
Resumo:
The pumping through progressing cavities system has been more and more employed in the petroleum industry. This occurs because of its capacity of elevation of highly viscous oils or fluids with great concentration of sand or other solid particles. A Progressing Cavity Pump (PCP) consists, basically, of a rotor - a metallic device similar to an eccentric screw, and a stator - a steel tube internally covered by a double helix, which may be rigid or deformable/elastomeric. In general, it is submitted to a combination of well pressure with the pressure generated by the pumping process itself. In elastomeric PCPs, this combined effort compresses the stator and generates, or enlarges, the clearance existing between the rotor and the stator, thus reducing the closing effect between their cavities. Such opening of the sealing region produces what is known as fluid slip or slippage, reducing the efficiency of the PCP pumping system. Therefore, this research aims to develop a transient three-dimensional computational model that, based on single-lobe PCP kinematics, is able to simulate the fluid-structure interaction that occurs in the interior of metallic and elastomeric PCPs. The main goal is to evaluate the dynamic characteristics of PCP s efficiency based on detailed and instantaneous information of velocity, pressure and deformation fields in their interior. To reach these goals (development and use of the model), it was also necessary the development of a methodology for generation of dynamic, mobile and deformable, computational meshes representing fluid and structural regions of a PCP. This additional intermediary step has been characterized as the biggest challenge for the elaboration and running of the computational model due to the complex kinematic and critical geometry of this type of pump (different helix angles between rotor and stator as well as large length scale aspect ratios). The processes of dynamic generation of meshes and of simultaneous evaluation of the deformations suffered by the elastomer are fulfilled through subroutines written in Fortan 90 language that dynamically interact with the CFX/ANSYS fluid dynamic software. Since a structural elastic linear model is employed to evaluate elastomer deformations, it is not necessary to use any CAE package for structural analysis. However, an initial proposal for dynamic simulation using hyperelastic models through ANSYS software is also presented in this research. Validation of the results produced with the present methodology (mesh generation, flow simulation in metallic PCPs and simulation of fluid-structure interaction in elastomeric PCPs) is obtained through comparison with experimental results reported by the literature. It is expected that the development and application of such a computational model may provide better details of the dynamics of the flow within metallic and elastomeric PCPs, so that better control systems may be implemented in the artificial elevation area by PCP
Resumo:
La mejora del comportamiento aerodinámico de vehículos pesados en la carretera ha adquirido una mayor importancia estos últimos años debido a la crisis y su consecuente aumento del precio de los combustibles. Dado que una reducción en la resistencia aerodinámica del vehículo conlleva un menor empleo de combustible, el objetivo de este proyecto es realizar un estudio paramétrico del conjunto tractor-tráiler mediante la mecánica de fluidos computacional (CFD) para así obtener la geometría que proporciona un menor gasto de combustible cuando ésta es expuesta a viento frontal. La influencia de 3 parámetros, que son la separación existente entre cabina y remolque, la altura del remolque y el radio de curvatura de las aristas frontales de la cabina, es analizada en este estudio dividido en varias etapas que implican el uso de programas específicos como son: la parametrización y creación de las geometrías en 3D que es llevada a cabo mediante CATIA, el mallado del dominio (realizado con Gambit) y resolución de las ecuaciones mediante FLUENT. Finalmente se obtendrá una relación entre la resistencia aerodinámica (representada mediante el coeficiente de arrastre) y la combinación de los 3 parámetros, que nos permitirá decidir que geometría es la óptima. Abstract The improvement of the heavy vehicle’s aerodynamic behavior on the road has gained a great importance for these last years because of the economic crisis and the consequent increase of the price of the fuels. Due to the fact that a reduction in the aerodynamic resistance of the vehicle involves using a smaller amount of fuel, the objective of this project is to carry out a parametric study about the ensemble tractor-trailer by computational fluid dynamics methods (CFD) in order to obtain the geometry which expense of fuel is the lowest when it’s exposed to frontal wind. The influence of the three parameters, which are the space between cab and trailer, the height of the trailer and the curvature of the frontal cab edges, is analysed in this study which is divided into different parts involving specific programs: choosing the parameters and building the geometries, which is done by using CATIA, the mesh is built by Gambit, and the program equations-solver is FLUENT. Finally a ratio between aerodynamic resistance and a combination of the three parameters will be obtained and it will allow us to choose the best geometry.
Resumo:
Debido al gran interés existente en el ahorro y recuperación de energía, y en el deseo de obtener productos que permitan usos beneficiosos del fango procedente de la depuración del agua residual, la digestión anaerobia es el proceso de estabilización de uso más extendido. El tiempo de retención de sólidos es un factor clave en el proceso de digestión anaerobia. En base al tiempo de retención de sólidos, se dimensiona el volumen de los digestores anaerobios para así obtener la reducción de materia orgánica deseada, con la correspondiente producción de biogás. La geometría del digestor y su sistema de agitación deben ser adecuados para alcanzar el tiempo de retención de sólidos de diseño. Los primeros trabajos sobre la agitación de los digestores realizaban únicamente experimentos con trazadores y otros métodos de medición. En otros casos, la mezcla era evaluada mediante la producción de biogás. Estas técnicas tenían el gran hándicap de no conocer lo que sucedía realmente dentro del digestor y sólo daban una idea aproximada de su funcionamiento. Mediante aplicación de la mecánica de fluidos computacional (CFD) es posible conocer con detalle las características del fluido objeto de estudio y, por lo tanto, simular perfectamente el movimiento del fango de un digestor anaerobio. En esta tesis se han simulado mediante CFD diferentes digestores a escala real (unos 2000 m3 de volumen) agitados con bomba/s de recirculación para alcanzar los siguientes objetivos: establecer la influencia de la relación entre el diámetro y la altura, de la pendiente de la solera, del número de bombas y del caudal de recirculación en dichos digestores, definir el campo de velocidades en la masa de fango y realizar un análisis energético y económico. Así, es posible conocer mejor cómo funciona el sistema de agitación de un digestor anaerobio a escala real equipado con bomba/s de recirculación. Los resultados obtenidos muestran que una relación diámetro/altura del digestor por encima de 1 empeora la agitación del mismo y que la pendiente en la solera del digestor favorece que la masa de fango esté mejor mezclada, siendo más determinante la esbeltez del tanque que la pendiente de su solera. No obstante, también es necesario elegir adecuadamente los parámetros de diseño del sistema de agitación, en este caso el caudal de recirculación de fango, para obtener una agitación completa sin apenas zonas muertas. En el caso de un digestor con una geometría inadecuada es posible mejorar su agitación aumentando el número de bombas de recirculación y el caudal de las mismas, pero no se llegará a alcanzar una agitación total de la masa de fango debido a su mal diseño original. Anaerobic digestion is the process for waste water treatment sludge stabilization of more widespread use due to the huge interest in saving and recovering energy and the wish to obtain products that allow beneficial uses for the sludge. The solids retention time is a key factor in the anaerobic digestion. Based on the solids retention time, volume anaerobic digester is sized to obtain the desired reduction in organic matter, with the corresponding production of biogas. The geometry of the digester and the stirring system should be adequate to achieve the design solid retention time. Early works on digesters stirring just performed tracer experiments and other measurement methods. In other cases, mixing was evaluated by biogas production. These techniques had the great handicap of not knowing what really happened inside the digester and they only gave a rough idea of its operation. By application of computational fluid dynamics (CFD), it is possible to know in detail the characteristics of the fluid under study and, therefore, simulate perfectly the sludge movement of an anaerobic digester. Different full-scale digesters (about 2000 m3 of volume) agitated with pump/s recirculation have been simulated by CFD in this thesis to achieve the following objectives: to establish the influence of the relationship between the diameter and height, the slope of the bottom, the number of pumps and the recirculation flow in such digesters, to define the velocity field in the mass of sludge and carry out an energy and economic analysis. Thus, it is possible to understand better how the agitation system of a full-scale anaerobic digester equipped with pump/s recirculation works. The results achieved show that a diameter/height ratio of the digester above 1 worsens its stirring and that the slope of the digester bottom favors that the mass of sludge is better mixed, being more decisive the tank slenderness than the slope of its bottom. However, it is also necessary to select properly the design parameters of the agitation system, in this case the sludge recirculation flow rate, for a complete agitation with little dead zones. In the case of a digester with inadequate geometry, its agitation can be improved by increasing the number of recirculation pumps and flow of them, but it will not reach a full agitation of the mass of sludge because of the poor original design.
Resumo:
LINS, Filipe C. A. et al. Modelagem dinâmica e simulação computacional de poços de petróleo verticais e direcionais com elevação por bombeio mecânico. In: CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS, 5. 2009, Fortaleza, CE. Anais... Fortaleza: CBPDPetro, 2009.
Resumo:
LINS, Filipe C. A. et al. Modelagem dinâmica e simulação computacional de poços de petróleo verticais e direcionais com elevação por bombeio mecânico. In: CONGRESSO BRASILEIRO DE PESQUISA E DESENVOLVIMENTO EM PETRÓLEO E GÁS, 5. 2009, Fortaleza, CE. Anais... Fortaleza: CBPDPetro, 2009.
Resumo:
Os métodos numéricos convencionais, baseados em malhas, têm sido amplamente aplicados na resolução de problemas da Dinâmica dos Fluidos Computacional. Entretanto, em problemas de escoamento de fluidos que envolvem superfícies livres, grandes explosões, grandes deformações, descontinuidades, ondas de choque etc., estes métodos podem apresentar algumas dificuldades práticas quando da resolução destes problemas. Como uma alternativa viável, existem os métodos de partículas livre de malhas. Neste trabalho é feita uma introdução ao método Lagrangeano de partículas, livre de malhas, Smoothed Particle Hydrodynamics (SPH) voltado para a simulação numérica de escoamentos de fluidos newtonianos compressíveis e quase-incompressíveis. Dois códigos numéricos foram desenvolvidos, uma versão serial e outra em paralelo, empregando a linguagem de programação C/C++ e a Compute Unified Device Architecture (CUDA), que possibilita o processamento em paralelo empregando os núcleos das Graphics Processing Units (GPUs) das placas de vídeo da NVIDIA Corporation. Os resultados numéricos foram validados e a eficiência computacional avaliada considerandose a resolução dos problemas unidimensionais Shock Tube e Blast Wave e bidimensional da Cavidade (Shear Driven Cavity Problem).
Resumo:
Nesse trabalho, foi desenvolvido um simulador numérico (C/C++) para a resolução de escoamentos de fluidos newtonianos incompressíveis, baseado no método de partículas Lagrangiano, livre de malhas, Smoothed Particle Hydrodynamics (SPH). Tradicionalmente, duas estratégias são utilizadas na determinação do campo de pressões de forma a garantir-se a condição de incompressibilidade do fluido. A primeira delas é a formulação chamada Weak Compressible Smoothed Particle Hydrodynamics (WCSPH), onde uma equação de estado para um fluido quase-incompressível é utilizada na determinação do campo de pressões. A segunda, emprega o Método da Projeção e o campo de pressões é obtido mediante a resolução de uma equação de Poisson. No estudo aqui desenvolvido, propõe-se três métodos iterativos, baseados noMétodo da Projeção, para o cálculo do campo de pressões, Incompressible Smoothed Particle Hydrodynamics (ISPH). A fim de validar os métodos iterativos e o código computacional, foram simulados dois problemas unidimensionais: os escoamentos de Couette entre duas placas planas paralelas infinitas e de Poiseuille em um duto infinito e foram usadas condições de contorno do tipo periódicas e partículas fantasmas. Um problema bidimensional, o escoamento no interior de uma cavidade com a parede superior posta em movimento, também foi considerado. Na resolução deste problema foi utilizado o reposicionamento periódico de partículas e partículas fantasmas.
Resumo:
Em uma grande gama de problemas físicos, governados por equações diferenciais, muitas vezes é de interesse obter-se soluções para o regime transiente e, portanto, deve-se empregar técnicas de integração temporal. Uma primeira possibilidade seria a de aplicar-se métodos explícitos, devido à sua simplicidade e eficiência computacional. Entretanto, esses métodos frequentemente são somente condicionalmente estáveis e estão sujeitos a severas restrições na escolha do passo no tempo. Para problemas advectivos, governados por equações hiperbólicas, esta restrição é conhecida como a condição de Courant-Friedrichs-Lewy (CFL). Quando temse a necessidade de obter soluções numéricas para grandes períodos de tempo, ou quando o custo computacional a cada passo é elevado, esta condição torna-se um empecilho. A fim de contornar esta restrição, métodos implícitos, que são geralmente incondicionalmente estáveis, são utilizados. Neste trabalho, foram aplicadas algumas formulações implícitas para a integração temporal no método Smoothed Particle Hydrodynamics (SPH) de modo a possibilitar o uso de maiores incrementos de tempo e uma forte estabilidade no processo de marcha temporal. Devido ao alto custo computacional exigido pela busca das partículas a cada passo no tempo, esta implementação só será viável se forem aplicados algoritmos eficientes para o tipo de estrutura matricial considerada, tais como os métodos do subespaço de Krylov. Portanto, fez-se um estudo para a escolha apropriada dos métodos que mais se adequavam a este problema, sendo os escolhidos os métodos Bi-Conjugate Gradient (BiCG), o Bi-Conjugate Gradient Stabilized (BiCGSTAB) e o Quasi-Minimal Residual (QMR). Alguns problemas testes foram utilizados a fim de validar as soluções numéricas obtidas com a versão implícita do método SPH.