991 resultados para Dimethyl-sulfoxide Solution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unfolding of a protein often proceeds through partial unfolded intermediate states (PUIS). PUIS have been detected in several experimental and simulation studies. However, complete analyses of transitions between different PUIS and the unfolding trajectory are sparse. To understand such dynamical processes, we study chemical unfolding of a small protein, chicken villin head piece (HP-36), in aqueous dimethyl sulfoxide (DMSO) solution. We carry out molecular dynamics simulations at various solution compositions under ambient conditions. In each concentration, the initial step of unfolding involves separation of two adjacent native contacts, between phenyl alanine residues (11-18 and 7-18). This first step induces, under appropriate conditions, subsequent separation among other hydrophobic contacts, signifying a high degree of cooperativity in the unfolding process. The observed sequence of structural changes in HP-36 on increasing DMSO concentration and the observed sequence of PUIS, are in approximate agreement with earlier simulation results (in pure water) and experimental observations on unfolding of HP-36. Peculiar to water-DMSO mixture, an intervening structural transformation (around 15% of DMSO) in the binary mixture solvent retards the progression of unfolding as composition is increased. This is reflected in a remarkable nonmonotonic composition dependence of RMSD, radius of gyration and the fraction of native contacts. At 30% mole fraction of DMSO, we find the extended randomly coiled structure of the unfolded protein. The molecular mechanism of DMSO induced unfolding process is attributed to the initial preferential solvation of the hydrophobic side chain atoms through the methyl groups of DMSO, followed by the hydrogen bonding of the oxygen atom of DMSO to the exposed backbone NH groups of HP-36.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental studies have observed significant changes in both structure and function of lysozyme (and other proteins) on addition of a small amount of dimethyl sulfoxide (DMSO) in aqueous solution. Our atomistic molecular dynamic simulations of lysozyme in water-DMSO reveal the following sequence of changes on increasing DMSO concentration. (i) At the initial stage (around 5% DMSO concentration) protein's conformational flexibility gets markedly suppressed. From study of radial distribution functions, we attribute this to the preferential solvation of exposed protein hydrophobic residues by the methyl groups of DMSO. (ii) In the next stage (10-15% DMSO concentration range), lysozome partially unfolds accompanied by an increase both in fluctuation and in exposed protein surface area. (iii) Between 15-20% concentration ranges, both conformational fluctuation and solvent accessible protein surface area suddenly decrease again indicating the formation of an intermediate collapse state. These results are in good agreement with near-UV circular dichroism (CD) and fluorescence studies. We explain this apparently surprising behavior in terms of a structural transformation which involves clustering among the methyl groups of DMSO. (iv) Beyond 20% concentration of DMSO, the protein starts its final sojourn towards the unfolding state with further increase in conformational fluctuation and loss in native contacts. Most importantly, analysis of contact map and fluctuation near the active site reveal that both partial unfolding and conformational fluctuations are centered mostly on the hydrophobic core of active site of lysozyme. Our results could offer a general explanation and universal picture of the anomalous behavior of protein structure-function observed in the presence of cosolvents (DMSO, ethanol, tertiary butyl alcohol, dioxane) at their low concentrations. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694268]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elucidation of possible pathways between folded (native) and unfolded states of a protein is a challenging task, as the intermediates are often hard to detect. Here, we alter the solvent environment in a controlled manner by choosing two different cosolvents of water, urea, and dimethyl sulfoxide (DMSO) and study unfolding of four different proteins to understand the respective sequence of melting by computer simulation methods. We indeed find interesting differences in the sequence of melting of alpha helices and beta sheets in these two solvents. For example, in 8 M urea solution, beta-sheet parts of a protein are found to unfold preferentially, followed by the unfolding of alpha helices. In contrast, 8 M DMSO solution unfolds alpha helices first, followed by the separation of beta sheets for the majority of proteins. Sequence of unfolding events in four different alpha/beta proteins and also in chicken villin head piece (HP-36) both in urea and DMSO solutions demonstrate that the unfolding pathways are determined jointly by relative exposure of polar and nonpolar residues of a protein and the mode of molecular action of a solvent on that protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrolysis has been examined as a method of synthesis for [(L)(dppb)Ru(mu-Cl)(3)RuCl(dppb)] complexes, where dppb = 1,4-bis(diphenylphosphino)butane and L = pyridine (py), 4-methylpyridine (4-pic) or dimethyl sulfoxide (DMSO), by using [RuCl3(dppb)(L)] as precursors. The products of the electrolysis were characterized by P-31-{H-1} NMR, cyclic voltammetry and near infrared spectroscopy. The presence of the [Ru2Cl5(dppb)(2)] complex in the electrochemical cell suggests a mechanism by which the starting original species from the bulk solution reacts with the reduced form [RuCl2(dppb)(L)] generated at the surface of the electrode. The crystal structure of the precursor mer-[RuCl3(dppb)(4-pic)] was determined by X-ray diffraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Raman spectrum of DMSO is recorded with a Hilger two-prism spectrograph andλ 4358 Å excitation. In addition to all the Raman lines reported earlier, six new lines at 898, 925, 1223, 1309, 2811 and 2871 cm.−1 are observed and tentative assignments are given. The influence of solvents (CCl4, CHCl3, CH3COOH) on the S=O bond is also studied. A shift from the liquid phase value,i.e., 1043 cm.−1 to 1054, 1052 and 1009 cm.−1 in the respective solvents is observed. The possibilities of association effects and hydrogen bonding are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental and simulation studies have uncovered at least two anomalous concentration regimes in water-dimethyl sulfoxide (DMSO) binary mixture whose precise origin has remained a subject of debate. In order to facilitate time domain experimental investigation of the dynamics of such binary mixtures, we explore strength or extent of influence of these anomalies in dipolar solvation dynamics by carrying out long molecular dynamics simulations over a wide range of DMSO concentration. The solvation time correlation function so calculated indeed displays strong composition dependent anomalies, reflected in pronounced non-exponential kinetics and non-monotonous composition dependence of the average solvation time constant. In particular, we find remarkable slow-down in the solvation dynamics around 10%-20% and 35%-50% mole percentage. We investigate microscopic origin of these two anomalies. The population distribution analyses of different structural morphology elucidate that these two slowing down are reflections of intriguing structural transformations in water-DMSO mixture. The structural transformations themselves can be explained in terms of a change in the relative coordination number of DMSO and water molecules, from 1DMSO:2H(2)O to 1H(2)O:1DMSO and 1H(2)O:2DMSO complex formation. Thus, while the emergence of first slow down (at 15% DMSO mole percentage) is due to the percolation among DMSO molecules supported by the water molecules (whose percolating network remains largely unaffected), the 2nd anomaly (centered on 40%-50%) is due to the formation of the network structure where the unit of 1DMSO:1H(2)O and 2DMSO:1H(2)O dominates to give rise to rich dynamical features. Through an analysis of partial solvation dynamics an interesting negative cross-correlation between water and DMSO is observed that makes an important contribution to relaxation at intermediate to longer times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glycerol and dimethyl sulfoxide (DMSO) are widely used as penetrating cryoprotectants in the freezing of sperm, and various concentrations are applied in different species and laboratories. The present study aimed to examine the effect of these two cryoprotectants at different concentrations (2%, 5%, 10%, and 15% glycerol or DMSO) on rhesus monkey sperm cryopreservation. The results showed that the highest recovery of post-thaw sperm motility, and plasma membrane and acrosome integrity was achieved when the sperm was frozen with 5% glycerol. Spermatozoa cryopreserved with 15% DMSO showed the lowest post-thaw sperm motility, and spermatozoa cryopreserved with 15% glycerol and 15% DMSO showed the lowest plasma membrane integrity among the eight groups. The results achieved with 5% glycerol were significantly better for all parameters than those obtained with 5% DMSO. The functional cryosurvival of sperm frozen with 5% glycerol was further assessed by in vitro fertilization (IVF). Overall, 85.7% of the oocytes were successfully fertilized, and 51.4% and 5.7% of the resulting zygotes developed into morulae and blastocysts, respectively. The results indicate that the type and concentration of the penetrating cryoprotectant used can greatly affect the survival of rhesus monkey sperm after it is frozen and thawed. The suitable glycerol level for rhesus monkey sperm freezing is 5%, and DMSO is not suitable for rhesus monkey sperm cryopreservation. (C) 2004 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the interaction mechanism between La3+ and microperoxidase-11 (MP-11) in the imitated physiological solution was investigated with the electrochemical and spectroscopic methods. It was found that when the molar ratio of La3+, and MP-11 is low, such as 2, La3+ can coordinate with oxygen in the propionic acid group of the heme group in the MP-11 molecule, forming the La-MP-11 complexes and leading to the increase in the non-planarity of the porphyrin cycle in the heme group and then the increase in the extent of exposure of the electrochemically active center, Fe(I I I) in the porphyrin cycle of the heme group. The increase in the extent of exposure of the electrochemically active center, Fe(III) in the porphyrin cycle of the heme group would increase the reversibility of the electrochemical reaction of the La-MP-11 complexes and its electrocatalytic activity for the reduction of H2O2. The results of the chromatographic analysis demonstrated that the average molar ratio of La3+ and MP-11 in the La-MP-11 complexes is 1.62.When the molar ratio of La3+ and MP-11 is high, such as 3, La3+ would shear some amino acid residues of the peptide of MP-11. Therefore, many La3+ ions can bind to the oxygen- and/or nitrogen-containing groups in the sheared amino acid residues except coordinating with the sheared and non-sheared MP-11 molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Circular dichroism (CD), fourier transform infrared (FTIR), and fluorescence spectroscopy were used to explore the effect of dimethyl sulfoxide (DMSO) on the structure and function of hemoglobin (Hb). The native tertiary structure was disrupted completely when the concentration of DMSO reached 50% (v/v), which was determined by loss of the characteristic Soret CD spectrum. Loss of the native tertiary structure could be mainly caused by breaking the hydrogen bonds, between the heme propionate groups and nearby surface amino acid residues, and by disorganizing the hydrophobic interior of this protein. Upon exposure of Hb to 52% DMSO for ca. 12 h in a D2O medium no significant change in 1652 cm(-1) band of the FTIR spectrum was produced, which demonstrated that alpha-helical structure predominated. When the concentration of DMSO increased to 57%: (1) the band at 1652 cm(-1) disappeared with the appearance of two new bands located at 1661 and 1648 cm(-1); (2) another new band at 1623 cm(-1) was attributed to the formation of intermolecular beta-sheet or aggregation, which was the direct consequence of breaking of the polypeptide chain by the competition of S=O groups in DMSO with C=O groups in amide bonds. Further increasing the DMSO concentration to 80%, the intensity at 1623 cm(-1) increased, and the bands at 1684, 1661 and 1648 cm(-1) shifted to 1688, 1664 and 1644 cm(-1), respectively. These changes showed that the native secondary structure of Hb was last and led to further aggregation and increase of the content of 'free' amide C=O groups. In pure DMSO solvent, the major band at 1664 cm(-1) indicated that almost all of both the intermolecular beta-sheet and any residual secondary structure were completely disrupted. The red shift of the fluorescence emission maxima showed that the tryptophan residues were exposed to a greater hydrophilic environment as the DMSO content increased. GO-binding experiment suggested that the biological function of Hb was disrupted seriously even if the content of DMSO was 20%. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The title solvate, C7H8N4O2 center dot C2H6OS, was obtained unintentionally from a cocrystal screen involving theophylline and isophthalic acid. One molecule each of theophylline and dimethyl sulfoxide is present in the asymmetric unit. The packing consists of molecular sheets lying parallel to the ( 040) series of lattice planes, in which each theophylline molecule is hydrogen bonded to one dimethyl sulfoxide molecule through an N-H center dot center dot center dot O [2.7658 (15) angstrom] hydrogen bond. This particular hydrogen-bond donor was found to be used in this type of interaction in a variety of other crystal structures of theophylline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stratum corneum (SC) barrier typically consists of layers of corneocytes embedded in a lipid continuum that regulates barrier function. The lipid domain containing ceramides, cholesterol, and free fatty acids provides the major pathway for most drugs permeating across SC. Penetration enhancers diminish the SC barrier function. The classic enhancer is dimethyl sulfoxide (DMSO). Its mechanisms of action remain unclear, although DMSO disrupts lipid organisation and may displace protein-bound water. Here we use confocal Raman spectroscopy to probe molecular interactions between a finite (depleting) dose of DMSO and SC, as functions of depth and time, providing novel information about residence time and location of DMSO in human SC in vivo

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of acetone and dimethyl sulfoxide in the liquid phase is investigated using Monte Carlo simulations and MM2 calculations. The principal site - site correlations and degree of structure in both liquids have been investigated. The results showed that dimethyl sulfoxide is more structured than acetone. At short distances the dipoles of neighboring molecules are found to be in antiparallel configurations, but further apart the molecules tend to be aligned predominantly as head to tail. In both liquids there is evidence of strong methyl - oxygen interaction, important to the structure of the liquids. The contacts suggest weak hydrogen bonds between methyl hydrogen and oxygen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A concentração inibitória mínima-MIC em 30 estirpes de Pseudomonas aeruginosa isoladas de mastite bovina foi avaliada utilizando o E-test padrão e o método modificado, pela adição de Tris-EDTA e DMSO. Os métodos modificados apresentaram redução significativa da MIC das estirpes utilizando a gentamicina, a ciprofloxacina e a norfloxacina.