476 resultados para Dimensionality
Resumo:
Attempts to understand why people with adequate communication skills do not always perform well have focused on personality or personal style variables. This research focuses on the situational context and the difficulty inherent in particular encounters. This paper reports two studies concerned with what makes difficult face-to-face communication in work settings difficult or demanding. The first study (Study 1) identifies the types of face-to-face communication encounters that people find difficult to manage in the workplace. Quantitative and qualitative data were gathered to define 41 difficult communication situations representing situations difficult for superiors, colleagues and subordinates, as well as generically difficult situations. In Study 2, quantitative data were analysed using multidimensional scaling techniques to reveal the underlying structure of the situations. Four dimensions were identified: protection/approach, vulnerability, self-management, and involvement/engagement. The results provide insight into the ways in which people construe these types of situations and also provide a taxonomy of difficult communication situations in the workplace. Theoretical and practical implications of the findings are discussed.
Resumo:
Objective: To develop a reliable, valid, and responsive self-administered questionnaire to probe pain, stiffness and physical disability in patients with osteoarthritis (OA) of the hand. Design: In order to assess the dimensionality of the symptomatology of hand OA, a self-administered questionnaire was developed to probe various aspects of pain (10 items), stiffness (two items), and physical function (83 items). The question inventory was generated from eight existing health status measures and an interactive process involving four rheumatologists, two physiotherapists, and an orthopaedic surgeon. Results: Face-to-face interviews were conducted with 50 OA hand patients; 39 females and 11 males with mean age 62.8 years and mean disease duration 9.4 years. Items retained were those which fulfilled specified selection criteria: prevalence greater than or equal to60% and mean importance score approximating or exceeding 2.0 Item exclusion criteria included low prevalence, gender-based, ambiguous, duplicates or similarities, alternatives, composite items, and items that were too restrictive. This process resulted in five pain, one stiffness and nine function items which have been proposed for incorporation in the AUSCAN Index. Conclusions: Using a traditional development strategy, we have constructed a self-administered multi-dimensional outcome measure for assessing hand OA. The next stage includes reliability, validity and responsiveness testing of the 15-item questionnaire. (C) 2002 OsteoArthritis Research Society Intenational. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
BACKGROUND: Examining changes in brain activation linked with emotion-inducing stimuli is essential to the study of emotions. Due to the ecological potential of techniques such as virtual reality (VR), inspection of whether brain activation in response to emotional stimuli can be modulated by the three-dimensional (3D) properties of the images is important. OBJECTIVE: The current study sought to test whether the activation of brain areas involved in the emotional processing of scenarios of different valences can be modulated by 3D. Therefore, the focus was made on the interaction effect between emotion-inducing stimuli of different emotional valences (pleasant, unpleasant and neutral valences) and visualization types (2D, 3D). However, main effects were also analyzed.METHODS: The effect of emotional valence and visualization types and their interaction were analyzed through a 3x2 repeated measures ANOVA. Post-hoc t-tests were performed under a ROI-analysis approach. RESULTS: The results show increased brain activation for the 3D affective-inducing stimuli in comparison with the same stimuli in 2D scenarios, mostly in cortical and subcortical regions that are related to emotional processing, in addition to visual processing regions. CONCLUSIONS: This study has the potential of clarify brain mechanisms involved in the processing of emotional stimuli (scenarios’ valence) and their interaction with three-dimensionality.
Resumo:
In hyperspectral imagery a pixel typically consists mixture of spectral signatures of reference substances, also called endmembers. Linear spectral mixture analysis, or linear unmixing, aims at estimating the number of endmembers, their spectral signatures, and their abundance fractions. This paper proposes a framework for hyperpsectral unmixing. A blind method (SISAL) is used for the estimation of the unknown endmember signature and their abundance fractions. This method solve a non-convex problem by a sequence of augmented Lagrangian optimizations, where the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. The proposed framework simultaneously estimates the number of endmembers present in the hyperspectral image by an algorithm based on the minimum description length (MDL) principle. Experimental results on both synthetic and real hyperspectral data demonstrate the effectiveness of the proposed algorithm.
Resumo:
L’anàlisi de l’efecte dels gens i els factors ambientals en el desenvolupament de malalties complexes és un gran repte estadístic i computacional. Entre les diverses metodologies de mineria de dades que s’han proposat per a l’anàlisi d’interaccions una de les més populars és el mètode Multifactor Dimensionality Reduction, MDR, (Ritchie i al. 2001). L’estratègia d’aquest mètode és reduir la dimensió multifactorial a u mitjançant l’agrupació dels diferents genotips en dos grups de risc: alt i baix. Tot i la seva utilitat demostrada, el mètode MDR té alguns inconvenients entre els quals l’agrupació excessiva de genotips pot fer que algunes interaccions importants no siguin detectades i que no permet ajustar per efectes principals ni per variables confusores. En aquest article il•lustrem les limitacions de l’estratègia MDR i d’altres aproximacions no paramètriques i demostrem la conveniència d’utilitzar metodologies parametriques per analitzar interaccions en estudis cas-control on es requereix l’ajust per variables confusores i per efectes principals. Proposem una nova metodologia, una versió paramètrica del mètode MDR, que anomenem Model-Based Multifactor Dimensionality Reduction (MB-MDR). La metodologia proposada té com a objectiu la identificació de genotips específics que estiguin associats a la malaltia i permet ajustar per efectes marginals i variables confusores. La nova metodologia s’il•lustra amb dades de l’Estudi Espanyol de Cancer de Bufeta.
Resumo:
The authors investigated the dimensionality of the French version of the Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965) using confirmatory factor analysis. We tested models of 1 or 2 factors. Results suggest the RSES is a 1-dimensional scale with 3 highly correlated items. Comparison with the Revised NEO-Personality Inventory (NEO-PI-R; Costa, McCrae, & Rolland, 1998) demonstrated that Neuroticism correlated strongly and Extraversion and Conscientiousness moderately with the RSES. Depression accounted for 47% of the variance of the RSES. Other NEO-PI-R facets were also moderately related with self-esteem.
Resumo:
Despite the long tradition for asking about the negative social and health consequences of alcohol consumption in surveys, little is known about the dimensionality of these consequences. Analysing cross-sectional and longitudinal data from the Nordic Taxation Study collected for Sweden, Finland, and Denmark in two waves in 2003 and 2004 by means of an explorative principal component analysis for categorical data (CATPCA), it is tested whether consequences have a single underlying dimension across cultures. It further tests the reliability, replicability, concurrent and predictive validity of the consequence scales. A one-dimensional solution was commonly preferable. Whereas the two-dimensional solution was unable to distinguish clearly between different concepts of consequences, the one-dimensional solution resulted in interpretable, generally very stable scales within countries across different samples and time.
Resumo:
It has been reported in the literature that executive functions may be fractioned into updating, shifting, and inhibition. The present study aimed to explore whether these executive sub-components can be identified in a more age-heterogeneous sample and see if they are prone to an age-related decline. We tested the performances of 81 individuals aged from 18 to 88 years old in each executive sub-component, working memory, fluid intelligence and processing speed. Correlation analysis revealed only a slight positive relationship between the two updating measures. A linear decrement with age was observed only for two complex executive tests. Tasks indexing working memory, processing speed and fluid intelligence showed a stronger linear decline with age than executive tasks. In conclusion, our results did not replicate the executive structure known from the literature, and revealed that decrement in executive function is not an unavoidable concomitant of aging but rather concerns specific executive tasks.
Resumo:
Functional Data Analysis (FDA) deals with samples where a whole function is observedfor each individual. A particular case of FDA is when the observed functions are densityfunctions, that are also an example of infinite dimensional compositional data. In thiswork we compare several methods for dimensionality reduction for this particular typeof data: functional principal components analysis (PCA) with or without a previousdata transformation and multidimensional scaling (MDS) for diferent inter-densitiesdistances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (householdsincome distributions)
Resumo:
We propose a novel multifactor dimensionality reduction method for epistasis detection in small or extended pedigrees, FAM-MDR. It combines features of the Genome-wide Rapid Association using Mixed Model And Regression approach (GRAMMAR) with Model-Based MDR (MB-MDR). We focus on continuous traits, although the method is general and can be used for outcomes of any type, including binary and censored traits. When comparing FAM-MDR with Pedigree-based Generalized MDR (PGMDR), which is a generalization of Multifactor Dimensionality Reduction (MDR) to continuous traits and related individuals, FAM-MDR was found to outperform PGMDR in terms of power, in most of the considered simulated scenarios. Additional simulations revealed that PGMDR does not appropriately deal with multiple testing and consequently gives rise to overly optimistic results. FAM-MDR adequately deals with multiple testing in epistasis screens and is in contrast rather conservative, by construction. Furthermore, simulations show that correcting for lower order (main) effects is of utmost importance when claiming epistasis. As Type 2 Diabetes Mellitus (T2DM) is a complex phenotype likely influenced by gene-gene interactions, we applied FAM-MDR to examine data on glucose area-under-the-curve (GAUC), an endophenotype of T2DM for which multiple independent genetic associations have been observed, in the Amish Family Diabetes Study (AFDS). This application reveals that FAM-MDR makes more efficient use of the available data than PGMDR and can deal with multi-generational pedigrees more easily. In conclusion, we have validated FAM-MDR and compared it to PGMDR, the current state-of-the-art MDR method for family data, using both simulations and a practical dataset. FAM-MDR is found to outperform PGMDR in that it handles the multiple testing issue more correctly, has increased power, and efficiently uses all available information.
Resumo:
Premenstrual syndrome and premenstrual dysphoric disorder (PMDD) seem to form a severity continuum with no clear-cut boundary. However, since the American Psychiatric Association proposed the research criteria for PMDD in 1994, there has been no agreement about the symptomatic constellation that constitutes this syndrome. The objective of the present study was to establish the core latent structure of PMDD symptoms in a non-clinical sample. Data concerning PMDD symptoms were obtained from 632 regularly menstruating college students (mean age 24.4 years, SD 5.9, range 17 to 49). For the first random half (N = 316), we performed principal component analysis (PCA) and for the remaining half (N = 316), we tested three theory-derived competing models of PMDD by confirmatory factor analysis. PCA allowed us to extract two correlated factors, i.e., dysphoric-somatic and behavioral-impairment factors. The two-dimensional latent model derived from PCA showed the best overall fit among three models tested by confirmatory factor analysis (c²53 = 64.39, P = 0.13; goodness-of-fit indices = 0.96; adjusted goodness-of-fit indices = 0.95; root mean square residual = 0.05; root mean square error of approximation = 0.03; 90%CI = 0.00 to 0.05; Akaike's information criterion = -41.61). The items "out of control" and "physical symptoms" loaded conspicuously on the first factor and "interpersonal impairment" loaded higher on the second factor. The construct validity for PMDD was accounted for by two highly correlated dimensions. These results support the argument for focusing on the core psychopathological dimension of PMDD in future studies.
Resumo:
This report explores how recurrent neural networks can be exploited for learning high-dimensional mappings. Since recurrent networks are as powerful as Turing machines, an interesting question is how recurrent networks can be used to simplify the problem of learning from examples. The main problem with learning high-dimensional functions is the curse of dimensionality which roughly states that the number of examples needed to learn a function increases exponentially with input dimension. This thesis proposes a way of avoiding this problem by using a recurrent network to decompose a high-dimensional function into many lower dimensional functions connected in a feedback loop.
Resumo:
Biological systems exhibit rich and complex behavior through the orchestrated interplay of a large array of components. It is hypothesized that separable subsystems with some degree of functional autonomy exist; deciphering their independent behavior and functionality would greatly facilitate understanding the system as a whole. Discovering and analyzing such subsystems are hence pivotal problems in the quest to gain a quantitative understanding of complex biological systems. In this work, using approaches from machine learning, physics and graph theory, methods for the identification and analysis of such subsystems were developed. A novel methodology, based on a recent machine learning algorithm known as non-negative matrix factorization (NMF), was developed to discover such subsystems in a set of large-scale gene expression data. This set of subsystems was then used to predict functional relationships between genes, and this approach was shown to score significantly higher than conventional methods when benchmarking them against existing databases. Moreover, a mathematical treatment was developed to treat simple network subsystems based only on their topology (independent of particular parameter values). Application to a problem of experimental interest demonstrated the need for extentions to the conventional model to fully explain the experimental data. Finally, the notion of a subsystem was evaluated from a topological perspective. A number of different protein networks were examined to analyze their topological properties with respect to separability, seeking to find separable subsystems. These networks were shown to exhibit separability in a nonintuitive fashion, while the separable subsystems were of strong biological significance. It was demonstrated that the separability property found was not due to incomplete or biased data, but is likely to reflect biological structure.
Resumo:
Functional Data Analysis (FDA) deals with samples where a whole function is observed for each individual. A particular case of FDA is when the observed functions are density functions, that are also an example of infinite dimensional compositional data. In this work we compare several methods for dimensionality reduction for this particular type of data: functional principal components analysis (PCA) with or without a previous data transformation and multidimensional scaling (MDS) for diferent inter-densities distances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (households income distributions)
Resumo:
Resumen tomado de la publicaci??n