989 resultados para Dihydrotestosterone -- pharmacology
Resumo:
In the adult male Sprague-Dawley rat, a species commonly used to study tolerance to the antinociceptive effects of morphine, approximate to 10% of the morphine dose is metabolized to normorphine-3-glucuronide (NM3G). In contrast, NM3G is a relatively minor metabolite of morphine in human urine reportedly accounting for approximate to 1% of the morphine dose. To date, the pharmacology of NM3G has been poorly characterized. Therefore, our studies were designed to determine whether the intrinsic pharmacology of NM3G is similar to that of morphine-3-glucuronide (M3G), the major metabolite of morphine, which has been shown to be a potent central nervous system (CNS) excitant and to attenuate the intrinsic antinociceptive effects of morphine in rats. The CNS excitatory potency of NM3G was found to be approximately half that of M3G, inducing convulsions in rats at intracerebroventricular (i.c.v.) doses of greater than or equal to 16.8 nmol. When administered before morphine (70 nmol i.c.v.), NM3G (8.9 nmol i.c.v.) attenuated antinociception for up to 2 hr, but when administered after morphine, no significant attenuation of morphine antinociception was observed. Thus, after i.c.v. administration, NM3G like M3G, is a potent CNS excitant and antianalgesic in the rat. NM3G may therefore play a role in the development of tolerance to the antinociceptive effects of morphine in the rat as has been proposed previously for M3G.
Resumo:
Nowadays, the great saphenous vein is the vascular conduit that is most frequently employed in coronary and peripheral revascularization surgery. It is known that saphenous vein bypass grafts have shorter patency than arterial ones, partly because the wall of the normal saphenous vein has different structural and functional characteristics. The features of this vein can be affected by the large distention pressures it is submitted to during its preparation and insertion into the arterial system. Indeed, a vein graft is subjected to considerable changes in hemodynamic forces upon implantation into the arterial circulation, since it is transplanted from a non-pulsatile, low-pressure, low-flow environment with minimal shear stress to a high-pressure system with pulsatile flow, where it undergoes cyclic strain and elevated shear. These changes can be responsible for functional and morphological alterations in the vessel wall, culminating in intima hyperproliferation and atherosclerotic degeneration, which contribute to early graft thrombosis. This review has followed a predetermined strategy for updating information on the human saphenous vein (HSV). Besides presenting the aspects relative to the basic pharmacology, this text also includes surgical aspects concerning HSV harvesting, the possible effects of the major groups of cardiovascular drugs on the HSV, and finally the interference of major cardiovascular diseases in the vascular reactivity of the HSV.
Resumo:
Overproduction or underregulation of the proinflammatory complement component C5a has been implicated in numerous immune and inflammatory conditions. Therefore, targeting the C5a receptor (C5aR) has become an innovative strategy for antiinflammatory drug development. The novel cyclic peptide C5aR antagonist, AcF-[OP(D-Cha)WR] (PMX53), attenuates injury in numerous animal models of inflammation following intravenous, subcutaneous, intraperitoneal, and oral administration. In the present study the transdermal pharmacology of PMX53 and three analogs designed with increased lipophilicity, hydrocinnamate-[OP(D-Cha)WCit] (PMX200), AcF-[OP(D-Cha)WCit] (PMX201) and hydrocinnamate-[OP(D-Cha)WR] (PMX205), have been examined in order to assess their transdermal permeability and inhibitory effect on C5a-mediated lipopolysaccharide (LPS)-induced systemic responses. In the rat, PMX53, PMX201, and PMX205, were bioavailable following topical dermal administration (10 mg/50 cm(2) site/rat). All analogs functionally antagonized neutropenia and hypotension induced by systemic challenge with LPS (I mg/kg i.v.). Interestingly, PMX200 attenuated LPS-induced neutropenia more effectively than other analogs, despite undetectable (< 5 ng/ml) circulating levels following topical administration. In conclusion, we have demonstrated that cyclic peptide C5aR antagonists can penetrate transdermally sufficiently to have systemic effects. However, increasing lipophilicity in these compounds did not result in increased blood levels. Nonetheless, topical application of C5aR antagonists produced circulating levels of the drugs that antagonized the LPS-induced systemic responses of neutropenia and hypotension. This suggests that these small-molecule C5aR antagonists may be developed for topical administration for the treatment of local and systemic inflammatory conditions in the human and veterinary pharmaceutical markets.
Resumo:
The aim was to examine the functional importance in the norepinephrine transporter (NET) of (i) the phenylalanine residue at position 531 in transmembrane domain (TMD) 11 by mutating it to tyrosine in the rat (rF531Y) and human (hF531Y) NETs and (ii) the highly conserved tyrosine residues at positions 249 in TMD 4 of human NET (hNET) (mutated to alanine: hY249A) and 271 in TMD 5, by mutating to alanine (hY271A), phenylalanine (hY271F) and histidine (hY271H). The effects of the mutations on NET function were for uptake of the substrates, examined by expressing the mutant and wildtype NETs in COS-7 cells and measuring the K-m and V-max for uptake of the substrates, [H-3]norepinephrine, [H-3]MPP+ and [H-3]dopamine, the K-D and B-max for [H-3]nisoxetine binding and the K-i of the inhibitors, nisoxetine, desipramine and cocaine, for inhibition of [H-3]norepinephrine uptake. The K-m values of the substrates were lower for the mutants at amino acid 271 than hNET and unaffected for the other mutants, and each mutant had a significantly lower than NET for substrate uptake. The mutations at position 271 caused an increase in the K-i or K-D values of nisoxetine, desipramine and cocaine, but there were no effects for the other mutations. Hence, the 271 tyrosine residue in TMD 5 is an important determinant of NET function, with the mutants showing an increase in the apparent affinities of substrates and a decrease in the apparent affinities of inhibitors, but the 249 tyrosine and 531 phenylalanine residues do not have a major role in determining NET function. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Some beta (1)- and beta (2)-adrenoceptor-blocking agents, such as (-)-CGP 12177, cause cardiostimulant effects at concentrations considerably higher than those that antagonise the effects of catecholamines. The cardiostimulant effects of these non-conventional partial agonists are relatively resistant to blockade by (-)-propranolol and have been proposed to be mediated through putative beta (4)-adrenoceptors or through atypical states of either beta (1)- or beta (2)-adrenoceptors. We investigated the effects of (-)-CGP 12177 on sinoatrial rate and left atrial contractile force as well as the ventricular binding of (-)-[H-3]CGP 12177 in tissues from wild-type, beta (2)-adrenoceptor knockout and beta (1)/beta (2)-adrenoceptor double knockout mice. The cardiostimulant effects of (-)-CGP 12177 were present in wildtype and beta (2)-adrenoceptor knockout mice but were absent in beta (1)/beta (2)-adrenoceptor double knockout mice. Thus, the presence of beta (1)-adrenoceptors is obligatory for the cardiostimulant effects of (-)-CGP 12177. It appears therefore that an atypical state of the beta (1)-adrenoceptor contributes to the mediation of the cardiostimulant effects induced by non-conventional partial agonists. Ventricular beta (1)- and beta (2)-adrenoceptors, labelled in wild-type with a K(D)similar to0.5 nmol/l (similar to 16 fmol/mg protein), were absent in beta (1)/beta (2)-adrenoceptor double knockout mice. However, a high density binding site (similar to 154-391 fmol/mg protein) that did not saturate completely (K(D)similar to 80-200 nM) was labelled by (-)-[H-3]CGP 12177 in the three groups of mice, being distinct from beta (1)- and beta (2)-adrenoceptors, as well as from the site mediating the agonist effects of(-)-CGP 12177.
Resumo:
1. There are a variety of methods that could be used to increase the efficiency of the design of experiments. However, it is only recently that such methods have been considered in the design of clinical pharmacology trials. 2. Two such methods, termed data-dependent (e.g. simulation) and data-independent (e.g. analytical evaluation of the information in a particular design), are becoming increasingly used as efficient methods for designing clinical trials. These two design methods have tended to be viewed as competitive, although a complementary role in design is proposed here. 3. The impetus for the use of these two methods has been the need for a more fully integrated approach to the drug development process that specifically allows for sequential development (i.e. where the results of early phase studies influence later-phase studies). 4. The present article briefly presents the background and theory that underpins both the data-dependent and -independent methods with the use of illustrative examples from the literature. In addition, the potential advantages and disadvantages of each method are discussed.
Resumo:
Androgens play an important role in regulating the central obesity that is a strong risk factor for cardiovascular disease and insulin resistance. This study confirms that androgen receptors are present in subcultured human preadipocytes, with androgen receptor gene expression and saturable specific dihydrotestosterone binding, dissociation constant 1.02 - 2.56 nM and maximal binding capacity 30.8 - 55.7 fmol/mg protein. There was an intrinsic regional difference in androgen receptor complement, with more androgen receptors in visceral than in subcutaneous preadipocytes. Dihydrotestosterone was metabolised by human preadipocytes, with more androstanediol produced by subcutaneous than visceral preadipocytes. While dihydrotestosterone metabolism was insufficient to explain the regional variation in androgen binding, both of these differences would reduce the androgen responsiveness of the subcutaneous preadipocytes compared with visceral preadipocytes. There were no gender differences in androgen binding or metabolism. While the direct effects of androgens on human PAS remain uncertain, these regional differences suggest that AR-mediated regulation of certain PA functions influences adipose tissue distribution.
Resumo:
Some aspects of curare research carried out over the last 25 years are discussed. Accepting a pharmacological rather than purely ethnological definition means, that curares are not limited to South America but that they are also known from Central Africa and South-EastAsia. Among the criteria that have been suggested for classifying South American curares: type of container, geographical origin, botanical sourcesof the active, constituent!, and chemical composition. A combination of botanical and geographical criteria leads to much the same regional ;groupings a combination of criteria involving the type of container and the chemical composition. The active principles in curares may derive from members of thr Loganiaceae (Strychnos) and/or Menispermaceae mainly Chondrodendron and Curarea, but also Abuta,Anomospermum, Cissampelos, Sciadotenia, and Telitoxicum). Certain of the Strychnos dimeric indole alkaloids can undergo a variety of cleavages, oxidations, and isomerizations; hence., some of the compounds obtained by normal isolation procedures one almost certainly artefacts. The different genera of, Menispermaceae a wide range of bisbenzyl and other types of isoquinoline alkaloids. Many of the plant additives also contain a variety of isoquinoline bases, and this has to be taken into account in assessing the contribution these ingredients may make to the ovzJuxll activity of, curare. Loganiaceae-bated curares with toxiferinzas major alkaloid tend to be the most toxic. In the case of Menispermaceae-based products, there-is evidence that the process by which they are made may lead to a considerable increase in the toxicity of the finished poisons as compared with the original plant materials. The mechanism of action of the alkaloids it, outlined, and the role of curare alkaloids in the development of, present-day muscle-relaxant drugs used in surgery is indicated. Attention lb drawn to reported medicinal uses of some of the alkaloid-bearing plants incorporated into curares, suggesting that further evaluation of these plants may be of interest.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2004
Resumo:
In this paper we discuss the consensus view on the use of qualifying biomarkers in drug safety, raised within the frame of the XXIV meeting of the Spanish Society of Clinical Pharmacology held in Málaga (Spain) in October, 2011. The widespread use of biomarkers as surrogate endpoints is a goal that scientists have long been pursuing. Thirty years ago, when molecular pharmacogenomics evolved, we anticipated that these genetic biomarkers would soon obviate the routine use of drug therapies in a way that patients should adapt to the therapy rather than the opposite. This expected revolution in routine clinical practice never took place as quickly nor with the intensity as initially expected. The concerted action of operating multicenter networks holds great promise for future studies to identify biomarkers related to drug toxicity and to provide better insight into the underlying pathogenesis. Today some pharmacogenomic advances are already widely accepted, but pharmacogenomics still needs further development to elaborate more precise algorithms and many barriers to implementing individualized medicine exist. We briefly discuss our view about these barriers and we provide suggestions and areas of focus to advance in the field.