65 resultados para Dihydrogen
Resumo:
Results of axiswise measurements of the electrical conductivity (dc and ac) and dielectric constant of NH4H2PO4 confirm the occurrence of the recently suggested high‐temperature phase transition in this crystal (at 133 °C). The corresponding transition in ND4D2PO4 observed here for the first time takes place at 141.5 °C. The mechanism involved in these transitions and those associated with the electrical conduction and dielectric anomalies are explained on the basis of the motional effects of the ammonium ions in these crystals. Conductivity values for deuterated crystals give direct evidence for the predominance of protonic conduction throughout the entire range of temperatures studied (30–260 °C).
Resumo:
Un pont de dihidrogen (dihydrogen bond,DHB) és un tipus de pont d'hidrogen atípic que s'estableix entre un hidrur metàl·lic i un donador de protons com un grup OH o NH. Els ponts de dihidrogen són claus en les característiques geomètriques i altres propietats de compostos que en presenten tan de molècules petites com el dímer de NH3BH3, com d'estructures superiors més complicades com complexes metàl·lics o sòlids. Poden ser útils aplicats a certes molècules o síntesis moleculars per a obtenir nous materials amb propietats o característiques fetes a mida. El treball d'aquesta tesi està orientat a millorar la comprensió dels ponts de dihidrogen, aprofundint en certs aspectes de la seva naturalesa atòmica/molecular utilitzant mètodes teòrics basats en la química física quàntica.
Resumo:
The title compound, [Al(HPO4)(H2PO4)(C10H8N2)]n, consists of AlO4N2 octahedra vertex-linked to H2PO4 and HPO4 tetrahedra to form layers based on a (4,12)- net. The layers stack in an AAA fashion, held in place by pi-pi interactions between 2,2 '-bipyridine molecules coordinated to Al atoms in adjacent layers.
Resumo:
An inelastic neutron scattering (INS) study of the rotational - vibrational spectrum of dihydrogen sorbed by zeolite X having substituted sodium, calcium and zinc cations is reported. The rotational - vibrational spectrum of H-2 was observed at low energy transfer ( below ca. 25 meV, 202 cm(-1)); the vibration was that of the H-2 molecule against the binding site (H-2 - X, not H - H). The vibration frequency was proportional to the polarising power of the cation (Na+ < Ca2+ < Zn2+). Polarisation of the H-2 molecule dominated the interaction of H-2 with this binding site. The total scattering intensity was proportional to the dihydrogen dose. However the vibrational intensities became constant at ca. 0.3 wt% showing that the H-2 binding sites had saturated. Additional dihydrogen appeared as unbound or weakly bound dihydrogen exhibiting recoil.
Resumo:
We report an inelastic neutron scattering (INS) study of the rotational–vibrational spectrum of dihydrogen sorbed by zeolite CaX. In the low energy (<200 cm−1) INS spectrum of adsorbed H2 we observe the rotational–vibrational spectrum of H2, where the vibration is that of the H2 molecule against the binding site (i.e. H2–X, not H–H). We have observed for the first time the vibrational overtones of the hydrogen molecule against the adsorption surface up to sixth order. These vibrations are usually forbidden in INS spectroscopy because of the selection rules imposed by the spin flip event required. In our case we are able to observe such a vibration because the rotational transition J(1 ← 0) convolutes the vibrational spectrum. This paper reports the effect for the first time.
Resumo:
Probe-beam deflection (PBD) was used to monitor concentration gradients of anions adjacent to the surface of a platinum electrode in acidic aqueous media containing H3PO4. PBD can measure the potential-dependent extent of adsorption of H2PO4- on the Pt electrode surface and permits the Langmuir isotherm to be fitted to the experimental data. The value thus obtained for the surface concentration was 1.3 × 10-11 mol mm -2, or 1.7 atoms of Pt per H2PO4-. Also, the electron transfer number obtained was 0.24, signifying an incomplete transfer of charge, and the equilibrium constant is 1.80 suggesting a reversible adsorption process. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The macrocyclic cobalt hexaamines [Co(trans-diammac)](3+) and [Co(cis-diammac)](3+) (diammac = 6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) are capable of reducing the overpotential for hydrogen evolution on a mercury cathode in aqueous solution. Protons are reduced in a catalytic process involving reoxidation of the Co-II species to its parent Co-III complex. The cycle is robust at neutral pH with no decomposition of catalyst. The stability of the [Co(trans-diammac)](2+) and [Co(cis-diammac)](2+) complexes depends on the pH of the solution and the coordinating properties of the supporting electrolyte. Electrochemical studies indicate that the adsorbed Co-II complex on the surface of mercury is the active catalyst for the reduction of protons to dihydrogen.
Resumo:
Human chorionic gonadotropin (hCG) is a key diagnostic marker of pregnancy and an important biomarker for cancers in the prostate, ovaries and bladder and therefore of great importance in diagnosis. For this purpose, a new immunosensor of screen-printed electrodes (SPEs) is presented here. The device was fabricated by introducing a polyaniline (PANI) conductive layer, via in situ electropolymerization of aniline, onto a screen-printed graphene support. The PANI-coated graphene acts as the working electrode of a three terminal electrochemical sensor. The working electrode is functionalised with anti-hCG, by means of a simple process that enabled oriented antibody binding to the PANI layer. The antibody was attached to PANI following activation of the –COOH group at the Fc terminal. Functionalisation of the electrode was analysed and optimized using Electrochemical Impedance Spectroscopy (EIS). Chemical modification of the surface was characterised using Fourier transform infrared, and Raman spectroscopy with confocal microscopy. The graphene–SPE–PANI devices displayed linear responses to hCG in EIS assays from 0.001 to 50 ng mL−1 in real urine, with a detection limit of 0.286 pg mL−1. High selectivity was observed with respect to the presence of the constituent components of urine (urea, creatinine, magnesium chloride, calcium chloride, sodium dihydrogen phosphate, ammonium chloride, potassium sulphate and sodium chloride) at their normal levels, with a negligible sensor response to these chemicals. Successful detection of hCG was also achieved in spiked samples of real urine from a pregnant woman. The immunosensor developed is a promising tool for point-of-care detection of hCG, due to its excellent detection capability, simplicity of fabrication, low-cost, high sensitivity and selectivity.
Resumo:
Concerning process control of batch cooling crystallization the present work focused on the cooling profile and seeding technique. Secondly, the influence of additives on batch-wise precipitation process was investigated. Moreover, a Computational Fluid Dynamics (CFD) model for simulation of controlled batch cooling crystallization was developed. A novel cooling model to control supersaturation level during batch-wise cooling crystallization was introduced. The crystallization kinetics together with operating conditions, i.e. seed loading, cooling rate and batch time, were taken into account in the model. Especially, the supersaturation- and suspension density- dependent secondary nucleation was included in the model. The interaction between the operating conditions and their influence on the control target, i.e. the constant level of supersaturation, were studied with the aid of a numerical solution for the cooling model. Further, the batch cooling crystallization was simulated with the ideal mixing model and CFD model. The moment transformation of the population balance, together with the mass and heat balances, were solved numerically in the simulation. In order to clarify a relationship betweenthe operating conditions and product sizes, a system chart was developed for anideal mixing condition. The utilization of the system chart to determine the appropriate operating condition to meet a required product size was introduced. With CFD simulation, batch crystallization, operated following a specified coolingmode, was studied in the crystallizers having different geometries and scales. The introduced cooling model and simulation results were verified experimentallyfor potassium dihydrogen phosphate (KDP) and the novelties of the proposed control policies were demonstrated using potassium sulfate by comparing with the published results in the literature. The study on the batch-wise precipitation showed that immiscible additives could promote the agglomeration of a derivative of benzoic acid, which facilitated the filterability of the crystal product.
Resumo:
Crystal growth is an essential phase in crystallization kinetics. The rate of crystal growth provides significant information for the design and control of crystallization processes; nevertheless, obtaining accurate growth rate data is still challenging due to a number of factors that prevail in crystal growth. In industrial crystallization, crystals are generally grown from multi-componentand multi-particle solutions under complicated hydrodynamic conditions; thus, it is crucial to increase the general understanding of the growth kinetics in these systems. The aim of this work is to develop a model of the crystal growth rate from solution. An extensive literature review of crystal growth focuses on themodelling of growth kinetics and thermodynamics, and new measuring techniques that have been introduced in the field of crystallization. The growth of a singlecrystal is investigated in binary and ternary systems. The binary system consists of potassium dihydrogen phosphate (KDP, crystallizing solute) and water (solvent), and the ternary system includes KDP, water and an organic admixture. The studied admixtures, urea, ethanol and 1-propanol, are employed at relatively highconcentrations (of up to 5.0 molal). The influence of the admixtures on the solution thermodynamics is studied using the Pitzer activity coefficient model. Theprediction method of the ternary solubility in the studied systems is introduced and verified. The growth rate of the KDP (101) face in the studied systems aremeasured in the growth cell as a function of supersaturation, the admixture concentration, the solution velocity over a crystal and temperature. In addition, the surface morphology of the KDP (101) face is studied using ex situ atomic force microscopy (AFM). The crystal growth rate in the ternary systems is modelled on the basis of the two-step growth model that contains the Maxwell-Stefan (MS) equations and a surface-reaction model. This model is used together with measuredcrystal growth rate data to develop a new method for the evaluation of the model parameters. The validation of the model is justified with experiments. The crystal growth rate in an imperfectly mixed suspension crystallizer is investigatedusing computational fluid dynamics (CFD). A solid-liquid suspension flow that includes multi-sized particles is described by the multi-fluid model as well as by a standard k-epsilon turbulence model and an interface momentum transfer model. The local crystal growth rate is determined from calculated flow information in a diffusion-controlled crystal growth regime. The calculated results are evaluated experimentally.
Resumo:
The objective of industrial crystallization is to obtain a crystalline product which has the desired crystal size distribution, mean crystal size, crystal shape, purity, polymorphic and pseudopolymorphic form. Effective control of the product quality requires an understanding of the thermodynamics of the crystallizing system and the effects of operation parameters on the crystalline product properties. Therefore, obtaining reliable in-line information about crystal properties and supersaturation, which is the driving force of crystallization, would be very advantageous. Advanced techniques, such asRaman spectroscopy, attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy, and in-line imaging techniques, offer great potential for obtaining reliable information during crystallization, and thus giving a better understanding of the fundamental mechanisms (nucleation and crystal growth) involved. In the present work, the relative stability of anhydrate and dihydrate carbamazepine in mixed solvents containing water and ethanol were investigated. The kinetics of the solvent mediated phase transformation of the anhydrate to hydrate in the mixed solvents was studied using an in-line Raman immersion probe. The effects of the operation parameters in terms of solvent composition, temperature and the use of certain additives on the phase transformation kineticswere explored. Comparison of the off-line measured solute concentration and the solid-phase composition measured by in-line Raman spectroscopy allowedthe identification of the fundamental processes during the phase transformation. The effects of thermodynamic and kinetic factors on the anhydrate/hydrate phase of carbamazepine crystals during cooling crystallization were also investigated. The effect of certain additives on the batch cooling crystallization of potassium dihydrogen phosphate (KDP) wasinvestigated. The crystal growth rate of a certain crystal face was determined from images taken with an in-line video microscope. An in-line image processing method was developed to characterize the size and shape of thecrystals. An ATR FTIR and a laser reflection particle size analyzer were used to study the effects of cooling modes and seeding parameters onthe final crystal size distribution of an organic compound C15. Based on the obtained results, an operation condition was proposed which gives improved product property in terms of increased mean crystal size and narrowersize distribution.
Resumo:
Työssä on tutkittu epäpuhtauksien vaikutusta kastelulannoitesuolojen monokaliumfosfaatin, kaliumnitraatin ja ureafosfaatin kiteytyksessä. Kirjallisuusosassa on käsitelty kastelulannoiteprosessit ja epäpuhtauksien vaikutus kastelulannoitteiden valmistuksessa. Kiteytys ja kiteenkasvu on esitetty perusyhtälöin, joissa on otettu epäpuhtauksien vaikutus huomioon. Tarkemmin on perehdytty monokaliumfosfaatin kiteytykseen ja kolmenarvoisten kationeiden, Al3+, Fe3+ ja Cr3+, vaikutukseen kiteiden kasvuun. Kolmenarvoiset metalli-ionit adsorboituvat kiteen pintaan haitaten kiteenkasvua, mikä vaikuttaa erityisesti kiteen prismapinnan kasvuun. Lisäksi on esitelty muita kiteenkasvuun vaikuttavia olosuhteita. Lopuksi on käsitelty kompleksinmuodostajia metalli-ionien haitallisten vaikutusten ehkäisijöinä. Kokeellisessa osassa suoritettiin liukoisuuskokeita monokaliumfosfaatin liukoisuuden selvittämiseksi eri pH-olosuhteissa. Suoritetuissa yksikidekokeissa tutkittiin pH:n ja kolmenarvoisten kationeiden; Al3+, Fe3+ ja Cr3+, vaikutus monokaliumfosfaattikiteen pituus- ja leveyskasvuun ja kidemuotoon eri ylikylläisyyksillä. Lisäksi tutkittiin voidaanko lämpötilaa ja pH muuttamalla tai pyrofosfaattia lisäämällä poistaa raudan kasvua inhiboima vaikutus. Kiteytyslämpötilaa nostamalla voidaan poistaa raudan haitallinen vaikutus kiteen kasvuun.
Resumo:
A rapid HPLC analytical method was developed and validated for the determination of the N-phenylpiperazine derivative LASSBio-579in plasma rat. Analyses were performed using a C18 column and elution with 20 mM sodium dihydrogen phosphate monohydrate - methanol. The analyte was monitored using a photodiode array detector (257 nm). Calibration curves in spiked plasma were linear over the concentration range of 0.3-8 mg/mL with determination coefficient > 0.99. The lower limit of quantification was 0.3 mg/mL. The applicability of the HPLC method for pharmacokinetic studies was tested using plasma samples obtained after administration of LASSBio-579 to Wistar rats, showing the specificity of the method.
Resumo:
Hydrogen bonds formed through the interaction between a high electronic density center (lone electron pairs, π or pseudo-π bonds) and proton donors cause important electronic and vibrational phenomena in many systems. However, it was demonstrated that proton donors interact with hydrides, such as alkali and alkaline earth metals (BeH2, MgH2, LiH and NaH), what yields a new type of interaction so-called dihydrogen bonds. The characterization of these interactions has been performed at light of the Quantum Theory of Atoms in Molecules (QTAIM), by which the electronic densities ρ are quantified and the intermolecular regions are characterized as closed-shell interactions through the analysis of the Laplacian field ∇2ρ.
Resumo:
Crystal properties, product quality and particle size are determined by the operating conditions in the crystallization process. Thus, in order to obtain desired end-products, the crystallization process should be effectively controlled based on reliable kinetic information, which can be provided by powerful analytical tools such as Raman spectrometry and thermal analysis. The present research work studied various crystallization processes such as reactive crystallization, precipitation with anti-solvent and evaporation crystallization. The goal of the work was to understand more comprehensively the fundamentals, phenomena and utilizations of crystallization, and establish proper methods to control particle size distribution, especially for three phase gas-liquid-solid crystallization systems. As a part of the solid-liquid equilibrium studies in this work, prediction of KCl solubility in a MgCl2-KCl-H2O system was studied theoretically. Additionally, a solubility prediction model by Pitzer thermodynamic model was investigated based on solubility measurements of potassium dihydrogen phosphate with the presence of non-electronic organic substances in aqueous solutions. The prediction model helps to extend literature data and offers an easy and economical way to choose solvent for anti-solvent precipitation. Using experimental and modern analytical methods, precipitation kinetics and mass transfer in reactive crystallization of magnesium carbonate hydrates with magnesium hydroxide slurry and CO2 gas were systematically investigated. The obtained results gave deeper insight into gas-liquid-solid interactions and the mechanisms of this heterogeneous crystallization process. The research approach developed can provide theoretical guidance and act as a useful reference to promote development of gas-liquid reactive crystallization. Gas-liquid mass transfer of absorption in the presence of solid particles in a stirred tank was investigated in order to gain understanding of how different-sized particles interact with gas bubbles. Based on obtained volumetric mass transfer coefficient values, it was found that the influence of the presence of small particles on gas-liquid mass transfer cannot be ignored since there are interactions between bubbles and particles. Raman spectrometry was successfully applied for liquid and solids analysis in semi-batch anti-solvent precipitation and evaporation crystallization. Real-time information such as supersaturation, formation of precipitates and identification of crystal polymorphs could be obtained by Raman spectrometry. The solubility prediction models, monitoring methods for precipitation and empirical model for absorption developed in this study together with the methodologies used gives valuable information for aspects of industrial crystallization. Furthermore, Raman analysis was seen to be a potential controlling method for various crystallization processes.