999 resultados para Digital relay
Resumo:
Os sistemas de proteção dos elementos da rede elétrica desempenham um papel de fundamental importância na segurança e confiabilidade dos sistemas de potência. A não atuação ou a atuação incorreta dos relés de proteção durante uma falta localizada em um componente da rede pode transformar-se em um evento sistêmico de grandes proporções (blecaute). Esses eventos trazem riscos e elevados prejuízos econômicos à sociedade. A proteção dos geradores síncronos, apesar do alto custo e complexidade deste tipo de equipamento, não recebe a mesma atenção na literatura que a dedicada à proteção de outros elementos da rede, como, por exemplo, a das linhas de transmissão. Isso decorre do menor número de geradores existentes na rede e também da ideia que as faltas neste tipo de equipamento são menos frequentes. Este trabalho aborda os principais aspectos envolvidos com o projeto de um sistema de proteção para geradores síncronos de grande porte. Incialmente, discutese os principais conceitos associados com os geradores, de interesse para a tarefa de proteção. Particular atenção é dedicada às formas de aterramento e aos critérios adotados para projeto do resistor de aterramento utilizado nesse equipamento. Em seguida, apresentam-se as principais funções de proteção aplicáveis aos geradores, particularmente aquelas voltadas para a detecção de faltas nos enrolamentos do estator. Discute-se também os critérios de ajustes dos parâmetros dessas funções. Descreve-se o uso de uma plataforma laboratorial, baseada em simulador de tempo real (RTDS), para ensaio e análise do sistema de proteção visando validar seu correto desempenho frente às possíveis condições operativas que podem ser encontradas em campo. Finalmente, utilizando os conceitos desenvolvidos ao longo do trabalho, desenvolve-se um estudo de caso, onde é realizado o projeto e implementação do sistema de proteção dos geradores de uma usina hidrelétrica hipotética. Para avaliar e analisar o desempenho do sistema de proteção dessa rede exemplo, parametrizou-se o IED G60 (GE) e realizou-se inúmeras simulações na plataforma de testes proposta.
Resumo:
Studies of code-switching in writing are very limited in comparison with the numerous investigations of this phenomenon in oral communication. Recent research has revealed that in text-based computer-mediated communication internet users bring into play the various languages available in their linguistic repertoire and, consequently, switch between them. In this case study, I investigate digital code-switching between Cypriot and Standard Greek, the two varieties of Greek spoken on the island of Cyprus. Following Auer’s conversation analytic approach and Gafaranga’s view that conversational structure coexists with social structure, I investigate code-switching in online interactions. The data to be analysed here, unlike those considered in most studies of code-switching, are written data, obtained from channel #Cyprus of Internet Relay Chat. The results suggest that code-switching in writing is influenced not only by macro-sociolinguistic factors, but they are also shaped by the medium- and social-specific characteristics of Internet Relay Chat. This, in turn, allows internet users to gain access to different roles and perform various identities within this online context.
Resumo:
Transformers are very important elements of any power system. Unfortunately, they are subjected to through-faults and abnormal operating conditions which can affect not only the transformer itself but also other equipment connected to the transformer. Thus, it is essential to provide sufficient protection for transformers as well as the best possible selectivity and sensitivity of the protection. Nowadays microprocessor-based relays are widely used to protect power equipment. Current differential and voltage protection strategies are used in transformer protection applications and provide fast and sensitive multi-level protection and monitoring. The elements responsible for detecting turn-to-turn and turn-to-ground faults are the negative-sequence percentage differential element and restricted earth-fault (REF) element, respectively. During severe internal faults current transformers can saturate and slow down the speed of relay operation which affects the degree of equipment damage. The scope of this work is to develop a modeling methodology to perform simulations and laboratory tests for internal faults such as turn-to-turn and turn-to-ground for two step-down power transformers with capacity ratings of 11.2 MVA and 290 MVA. The simulated current waveforms are injected to a microprocessor relay to check its sensitivity for these internal faults. Saturation of current transformers is also studied in this work. All simulations are performed with the Alternative Transients Program (ATP) utilizing the internal fault model for three-phase two-winding transformers. The tested microprocessor relay is the SEL-487E current differential and voltage protection relay. The results showed that the ATP internal fault model can be used for testing microprocessor relays for any percentage of turns involved in an internal fault. An interesting observation from the experiments was that the SEL-487E relay is more sensitive to turn-to-turn faults than advertized for the transformers studied. The sensitivity of the restricted earth-fault element was confirmed. CT saturation cases showed that low accuracy CTs can be saturated with a high percentage of turn-to-turn faults, where the CT burden will affect the extent of saturation. Recommendations for future work include more accurate simulation of internal faults, transformer energization inrush, and other scenarios involving core saturation, using the newest version of the internal fault model. The SEL-487E relay or other microprocessor relays should again be tested for performance. Also, application of a grounding bank to the delta-connected side of a transformer will increase the zone of protection and relay performance can be tested for internal ground faults on both sides of a transformer.
Resumo:
Language is a unique aspect of human communication because it can be used to discuss itself in its own terms. For this reason, human societies potentially have superior capacities of co-ordination, reflexive self-correction, and innovation than other animal, physical or cybernetic systems. However, this analysis also reveals that language is interconnected with the economically and technologically mediated social sphere and hence is vulnerable to abstraction, objectification, reification, and therefore ideology – all of which are antithetical to its reflexive function, whilst paradoxically being a fundamental part of it. In particular, in capitalism, language is increasingly commodified within the social domains created and affected by ubiquitous communication technologies. The advent of the so-called ‘knowledge economy’ implicates exchangeable forms of thought (language) as the fundamental commodities of this emerging system. The historical point at which a ‘knowledge economy’ emerges, then, is the critical point at which thought itself becomes a commodified ‘thing’, and language becomes its “objective” means of exchange. However, the processes by which such commodification and objectification occurs obscures the unique social relations within which these language commodities are produced. The latest economic phase of capitalism – the knowledge economy – and the obfuscating trajectory which accompanies it, we argue, is destroying the reflexive capacity of language particularly through the process of commodification. This can be seen in that the language practices that have emerged in conjunction with digital technologies are increasingly non-reflexive and therefore less capable of self-critical, conscious change.