947 resultados para Digital communications.
Resumo:
We present methods for fixed-lag smoothing using Sequential Importance sampling (SIS) on a discrete non-linear, non-Gaussian state space system with unknown parameters. Our particular application is in the field of digital communication systems. Each input data point is taken from a finite set of symbols. We represent transmission media as a fixed filter with a finite impulse response (FIR), hence a discrete state-space system is formed. Conventional Markov chain Monte Carlo (MCMC) techniques such as the Gibbs sampler are unsuitable for this task because they can only perform processing on a batch of data. Data arrives sequentially, so it would seem sensible to process it in this way. In addition, many communication systems are interactive, so there is a maximum level of latency that can be tolerated before a symbol is decoded. We will demonstrate this method by simulation and compare its performance to existing techniques.
Resumo:
For pt. I see ibid., vol. 44, p. 927-36 (1997). In a digital communications system, data are transmitted from one location to another by mapping bit sequences to symbols, and symbols to sample functions of analog waveforms. The analog waveform passes through a bandlimited (possibly time-varying) analog channel, where the signal is distorted and noise is added. In a conventional system the analog sample functions sent through the channel are weighted sums of one or more sinusoids; in a chaotic communications system the sample functions are segments of chaotic waveforms. At the receiver, the symbol may be recovered by means of coherent detection, where all possible sample functions are known, or by noncoherent detection, where one or more characteristics of the sample functions are estimated. In a coherent receiver, synchronization is the most commonly used technique for recovering the sample functions from the received waveform. These sample functions are then used as reference signals for a correlator. Synchronization-based coherent receivers have advantages over noncoherent receivers in terms of noise performance, bandwidth efficiency (in narrow-band systems) and/or data rate (in chaotic systems). These advantages are lost if synchronization cannot be maintained, for example, under poor propagation conditions. In these circumstances, communication without synchronization may be preferable. The theory of conventional telecommunications is extended to chaotic communications, chaotic modulation techniques and receiver configurations are surveyed, and chaotic synchronization schemes are described
Resumo:
The rapid growth in high data rate communication systems has introduced new high spectral efficient modulation techniques and standards such as LTE-A (long term evolution-advanced) for 4G (4th generation) systems. These techniques have provided a broader bandwidth but introduced high peak-to-average power ratio (PAR) problem at the high power amplifier (HPA) level of the communication system base transceiver station (BTS). To avoid spectral spreading due to high PAR, stringent requirement on linearity is needed which brings the HPA to operate at large back-off power at the expense of power efficiency. Consequently, high power devices are fundamental in HPAs for high linearity and efficiency. Recent development in wide bandgap power devices, in particular AlGaN/GaN HEMT, has offered higher power level with superior linearity-efficiency trade-off in microwaves communication. For cost-effective HPA design to production cycle, rigorous computer aided design (CAD) AlGaN/GaN HEMT models are essential to reflect real response with increasing power level and channel temperature. Therefore, large-size AlGaN/GaN HEMT large-signal electrothermal modeling procedure is proposed. The HEMT structure analysis, characterization, data processing, model extraction and model implementation phases have been covered in this thesis including trapping and self-heating dispersion accounting for nonlinear drain current collapse. The small-signal model is extracted using the 22-element modeling procedure developed in our department. The intrinsic large-signal model is deeply investigated in conjunction with linearity prediction. The accuracy of the nonlinear drain current has been enhanced through several issues such as trapping and self-heating characterization. Also, the HEMT structure thermal profile has been investigated and corresponding thermal resistance has been extracted through thermal simulation and chuck-controlled temperature pulsed I(V) and static DC measurements. Higher-order equivalent thermal model is extracted and implemented in the HEMT large-signal model to accurately estimate instantaneous channel temperature. Moreover, trapping and self-heating transients has been characterized through transient measurements. The obtained time constants are represented by equivalent sub-circuits and integrated in the nonlinear drain current implementation to account for complex communication signals dynamic prediction. The obtained verification of this table-based large-size large-signal electrothermal model implementation has illustrated high accuracy in terms of output power, gain, efficiency and nonlinearity prediction with respect to standard large-signal test signals.
Resumo:
We present information-theory analysis of the tradeoff between bit-error rate improvement and the data-rate loss using skewed channel coding to suppress pattern-dependent errors in digital communications. Without loss of generality, we apply developed general theory to the particular example of a high-speed fiber communication system with a strong patterning effect. © 2007 IEEE.
Resumo:
We propose weakly-constrained stream and block codes with tunable pattern-dependent statistics and demonstrate that the block code capacity at large block sizes is close to the the prediction obtained from a simple Markov model published earlier. We demonstrate the feasibility of the code by presenting original encoding and decoding algorithms with a complexity log-linear in the block size and with modest table memory requirements. We also show that when such codes are used for mitigation of patterning effects in optical fibre communications, a gain of about 0.5dB is possible under realistic conditions, at the expense of small redundancy 10%). © 2006 IEEE.
Resumo:
We quantify the error statistics and patterning effects in a 5x 40 Gbit/s WDM RZ-DBPSK SMF/DCF fibre link using hybrid Raman/EDFA amplification. We propose an adaptive constrained coding for the suppression of errors due to patterning effects. It is established, that this coding technique can greatly reduce the bit error rate (BER) value even for large BER (BER > 101). The proposed approach can be used in the combination with the forward error correction schemes (FEC) to correct the errors even when real channel BER is outside the FEC workspace.
Resumo:
We propose weakly-constrained stream and block codes with tunable pattern-dependent statistics and demonstrate that the block code capacity at large block sizes is close to the the prediction obtained from a simple Markov model published earlier. We demonstrate the feasibility of the code by presenting original encoding and decoding algorithms with a complexity log-linear in the block size and with modest table memory requirements. We also show that when such codes are used for mitigation of patterning effects in optical fibre communications, a gain of about 0.5dB is possible under realistic conditions, at the expense of small redundancy (≈10%). © 2010 IEEE
Resumo:
Social media digital and technologies surround us. We are moving into an age of ubiquitous (that is everywhere) computing. New media and information and communication technologies already impact on many aspects of everyday life including work, home and leisure. These new technologies are influencing the way that we develop social networks; understand places and location; how we navigate our cities; how we provide information about utilities and services; developing new ways to engage and participate in our communities, in planning, in governance and other decisions. This paper presents the initial findings of the impacts that digital communication technologies are having on public urban spaces. It develops a contextual review the nexus between urban planning and technological developments with examples and case studies from around the world to highlight some of the potential directions for urban planning in Queensland and Australia. It concludes with some thought provoking discussion points for urban planners, architects, designers and placemakers on the future of urban informatics and urban design, questions such as: how technology can enhance ‘place’, how technology can be used to improve public participation, and how technology will change our requirements of public places?
Resumo:
Conventional approaches of digital modulation schemes make use of amplitude, frequency and/or phase as modulation characteristic to transmit data. In this paper, we exploit circular polarization (CP) of the propagating electromagnetic carrier as modulation attribute which is a novel concept in digital communications. The requirement of antenna alignment to maximize received power is eliminated for CP signals and these are not affected by linearly polarized jamming signals. The work presents the concept of Circular Polarization Modulation for 2, 4 and 8 states of carrier and refers them as binary circular polarization modulation (BCPM), quaternary circular polarization modulation (QCPM) and 8-state circular polarization modulation (8CPM) respectively. Issues of modulation, demodulation, 3D symbol constellations and 3D propagating waveforms for the proposed modulation schemes are presented and analyzed in the presence of channel effects, and they are shown to have the same bit error performance in the presence of AWGN compared with conventional schemes while provide 3dB gain in the flat Rayleigh fading channel.
Resumo:
Pós-graduação em Televisão Digital: Informação e Conhecimento - FAAC
Resumo:
The internet as well as all technologies arising from it are transforming and changing socially and economically, the forms of relationships between people and organizations. The environment of digital mobile communication is on the rise, allowing more communication strategies in public relations to be enhanced, in order to allow effective dialogue, relationship and interaction between organizations and their stakeholders. Accordingly, the purpose of this paper is to analyze digital communications, especially a locative media tool that has been gaining ground in communication activities: Quick Response Code. So in addition to conceptualize and contextualize it, one tried to map out various campaigns, both national and international, who made use of the QR Code, highlighting the strategic role that this tool can have in Integrated PR planning, in order to create visibility and to establish effective and lasting relationships with the brand / organization
Resumo:
La señalización digital o digital signage es una tecnología de comunicaciones digital que se está usando en los últimos años para reemplazar a la antigua publicidad impresa. Esta tecnología mejora la presentación y promoción de los productos anunciados, así como facilita el intercambio de información gracias a su colocación en lugares públicos o al aire libre. Las aplicaciones con las que cuenta este nuevo método de publicidad son muy variadas, ya que pueden variar desde ambientes privados en empresas, hasta lugares públicos como centros comerciales. Aunque la primera y principal utilidad de la señalización digital es la publicidad para que el usuario sienta una necesidad de adquirir productos, también la posibilidad de ofrecer más información sobre determinados artículos a través de las nuevas tecnologías es muy importante en este campo. La aplicación realizada en este proyecto es el desarrollo de un programa en Adobe Flash a través de lenguaje de programación XML. A través de una pantalla táctil, el usuario de un museo puede interactivamente acceder a un menú en el que aparecen los diferentes estilos de arte en un determinado tiempo de la historia. A través de una línea de tiempo se puede acceder a información sobre cada objeto que esté expuesto en la exhibición. Además se pueden observar imágenes de los detalles más importantes del objeto que no pueden ser vistos a simple vista, ya que no está permitido manipularlos. El empleo de la pantalla interactiva sirve para el usuario de la exhibición como una herramienta extra para recabar información sobre lo que está viendo, a través de una tecnología nueva y fácil de usar para todo el mundo, ya que solo se necesita usar las propias manos. La facilidad de manejo en aplicaciones como estas es muy importante, ya que el usuario final puede no tener conocimientos tecnológicos por lo que la información debe darse claramente. Como conclusión, se puede decir que digital signage es un mercado que está en expansión y que las empresas deben invertir en el desarrollo de contenidos, ya que las tecnologías avanzan aunque el digital signage no lo haga, y este sector podría ser muy útil en un futuro no muy lejano, ya que la información que es capaz de transmitir al espectador en todos los lugares es mucho más válida y útil que la proporcionada por un simple póster impreso en una valla publicitaria. Abstract The Digital signage is a digital communications technology being used in recent years to replace the old advertising printed. This technology improves the presentation and promotion of the advertised products, and makes easy the exchange of information with its placement in public places or outdoors. The applications that account this new method of advertising are several; they can range from private rooms in companies, to public places like malls. Although the first major utility of Digital signage is the advertising that makes the user feel and need of purchasing products. In addition, the chance of providing more information about certain items through new technologies is very important in this field. The application made in this project is the development of a program in Adobe Flash via XML programming language. Through a touch-screen, a museum user can interactively access a menu in which different styles of art in a particular time in history appears. Through a timeline you can access to information about each object that is exposed on display. Also you can see pictures of the most important details of the object that can not be seen with the naked eye, since it is not allowed to manipulate it. The use of the interactive screen serves to the user exhibition as an extra tool to gather information about what is seeing through a new technology and easy to use for everyone, since only need to use one’s own hands. The ease of handling in applications such as this is very important as the end user may not have expertise technology so the information should be clearly. As conclusion, one can say digital signage is an expansion market and companies must invest in content development, as although digital technologies advance digital signage does not, and this sector could be very useful in a near future, because information that is able of transmitting the everywhere viewer is much more valid and useful than that provided by a simple printed poster on a billboard.
Resumo:
Thesis (M.S.)--University of Illinois at Urbana-Champaign.