945 resultados para Digital Signal Processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to examine objective and subjective distortion present when frequency modulation (FM) systems were coupled with four digital signal processing (DSP) hearing aids. Electroacoustic analysis and subjective listening tests by experienced audiologists revealed that distortion levels varied across hearing aids and channels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Kalman filter algorithm has been applied to interpret the optical reflectance excursions during vacuum deposition of infrared coatings and multilayer thin-film filters. The application has been described in detail elsewhere and this paper now reports on-line experience for estimating deposition rate and thickness. The estimation proved sufficiently reliable to firstly 'navigate' regular manufacture (as controlled by a skilled operator) and to subsequently reproduce the skill without interpretation or intervention whilst maintaining exemplary product quality. Optical control by means of this Kalman filter application is therefore considered suitable as a basis for the automated manufacture of infrared coatings and multilayer thin-film filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate ex vivo the accuracy an electronic apex locator during root canal length determination in primary molars. Methods: One calibrated examiner determined the root canal length in 15 primary molars (total=34 root canals) with different stages of root resorption. Root canal length was measured both visually, with the placement of a K-file 1 mm short of the apical foramen or the apical resorption bevel, and electronically using an electronic apex locator (Digital Signal Processing). Data were analyzed statistically using the intraclass correlation (ICC) test. Results: Comparing the actual and electronic root canal length measurements in the primary teeth showed a high correlation (ICC=0.95) Conclusions: The Digital Signal Processing apex locator is useful and accurate for apex foramen location during root canal length measurement in primary molars. (Pediatr Dent 200937:320-2) Received April 75, 2008 vertical bar Lost Revision August 21, 2008 vertical bar Revision Accepted August 22, 2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the accuracy of electronic apex locators Digital Signal Processing (DSP) and ProPex, for root canal length determination in primary teeth. Fifteen primary molars (a total of 34 root canals) were divided into two groups: Group I - without physiological resorption (n = 16); and Group II - with physiological resorption (n = 18). The length of each canal was measured by introducing a file until its tip was visible and then it was retracted 1 mm. For electronic measurement, the devices were set to 1 mm short of the apical resorption. The data were analysed statistically using the intraclass correlation coefficient (ICC). Results showed that the ICC was high for both electronic apex locators in all situations - with (ICC: DSP = 0.82 and Propex = 0.89) or without resorption (ICC: DSP = 0.92 and Propex = 0.90). Both apex locators were extremely accurate in determining the working length in primary teeth, both with or without physiological resorption.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grinding process is usually the last finishing process of a precision component in the manufacturing industries. This process is utilized for manufacturing parts of different materials, so it demands results such as low roughness, dimensional and shape error control, optimum tool-life, with minimum cost and time. Damages on the parts are very expensive since the previous processes and the grinding itself are useless when the part is damaged in this stage. This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding process. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045 e VC131 steels. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate acquisition system at 2.5 MHz was used to collect the raw acoustic emission instead of root mean square value usually employed. In each test AE data was analyzed off-line, with results compared to inspection of each workpiece for burn and other metallurgical anomaly. A number of statistical signal processing tools have been evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of the parallel vector implementation of the one- and two-dimensional orthogonal transforms is evaluated. The orthogonal transforms are computed using actual or modified fast Fourier transform (FFT) kernels. The factors considered in comparing the speed-up of these vectorized digital signal processing algorithms are discussed and it is shown that the traditional way of comparing th execution speed of digital signal processing algorithms by the ratios of the number of multiplications and additions is no longer effective for vector implementation; the structure of the algorithm must also be considered as a factor when comparing the execution speed of vectorized digital signal processing algorithms. Simulation results on the Cray X/MP with the following orthogonal transforms are presented: discrete Fourier transform (DFT), discrete cosine transform (DCT), discrete sine transform (DST), discrete Hartley transform (DHT), discrete Walsh transform (DWHT), and discrete Hadamard transform (DHDT). A comparison between the DHT and the fast Hartley transform is also included.(34 refs)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discrete cosine transform (DCT) is an important functional block for image processing applications. The implementation of a DCT has been viewed as a specialized research task. We apply a micro-architecture based methodology to the hardware implementation of an efficient DCT algorithm in a digital design course. Several circuit optimization and design space exploration techniques at the register-transfer and logic levels are introduced in class for generating the final design. The students not only learn how the algorithm can be implemented, but also receive insights about how other signal processing algorithms can be translated into a hardware implementation. Since signal processing has very broad applications, the study and implementation of an extensively used signal processing algorithm in a digital design course significantly enhances the learning experience in both digital signal processing and digital design areas for the students.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Queueing theory is an effective tool in the analysis of canputer camrunication systems. Many results in queueing analysis have teen derived in the form of Laplace and z-transform expressions. Accurate inversion of these transforms is very important in the study of computer systems, but the inversion is very often difficult. In this thesis, methods for solving some of these queueing problems, by use of digital signal processing techniques, are presented. The z-transform of the queue length distribution for the Mj GY jl system is derived. Two numerical methods for the inversion of the transfom, together with the standard numerical technique for solving transforms with multiple queue-state dependence, are presented. Bilinear and Poisson transform sequences are presented as useful ways of representing continuous-time functions in numerical computations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through numerical modeling, we illustrate the possibility of a new approach to digital signal processing in coherent optical communications based on the application of the so-called inverse scattering transform. Considering without loss of generality a fiber link with normal dispersion and quadrature phase shift keying signal modulation, we demonstrate how an initial information pattern can be recovered (without direct backward propagation) through the calculation of nonlinear spectral data of the received optical signal. © 2013 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coherent optical orthogonal frequency division multiplexing (CO-OFDM) has been actively considered as a potential candidate for long-haul transmission and 400 Gb/s to 1 Tb/s Ethernet transport because of its high spectral efficiency, efficient implementation, flexibility and robustness against linear impairments such as chromatic dispersion and polarization mode dispersion. However, due to the long symbol duration and narrow subcarrier spacing, CO-OFDM systems are sensitive to laser phase noise and fibre nonlinearity induced penalties. As a result, the development of CO-OFDM transmission technology crucially relies on efficient techniques to compensate for the laser phase noise and fibre nonlinearity impairments. In this thesis, high performance and low complexity digital signal processing techniques for laser phase noise and fibre nonlinearity compensation in CO-OFDM transmissions are demonstrated. For laser phase noise compensation, three novel techniques, namely quasipilot-aided, decision-directed-free blind and multiplier-free blind are introduced. For fibre nonlinear compensation, two novel techniques which are referred to as phase conjugated pilots and phase conjugated subcarrier coding, are proposed. All these abovementioned digital signal processing techniques offer high performances and flexibilities while requiring relatively low complexities in comparison with other existing phase noise and nonlinear compensation techniques. As a result of the developments of these digital signal processing techniques, CO-OFDM technology is expected to play a significant role in future ultra-high capacity optical network. In addition, this thesis also presents preliminary study on nonlinear Fourier transform based transmission schemes in which OFDM is a highly suitable modulation format. The obtained result paves the way towards a truly flexible nonlinear wave-division multiplexing system that allows the current nonlinear transmission limitations to be exceeded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Communication has become an essential function in our civilization. With the increasing demand for communication channels, it is now necessary to find ways to optimize the use of their bandwidth. One way to achieve this is by transforming the information before it is transmitted. This transformation can be performed by several techniques. One of the newest of these techniques is the use of wavelets. Wavelet transformation refers to the act of breaking down a signal into components called details and trends by using small waveforms that have a zero average in the time domain. After this transformation the data can be compressed by discarding the details, transmitting the trends. In the receiving end, the trends are used to reconstruct the image. In this work, the wavelet used for the transformation of an image will be selected from a library of available bases. The accuracy of the reconstruction, after the details are discarded, is dependent on the wavelets chosen from the wavelet basis library. The system developed in this thesis takes a 2-D image and decomposes it using a wavelet bank. A digital signal processor is used to achieve near real-time performance in this transformation task. A contribution of this thesis project is the development of DSP-based test bed for the future development of new real-time wavelet transformation algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research has indicated that the pupil diameter (PD) in humans varies with their affective states. However, this signal has not been fully investigated for affective sensing purposes in human-computer interaction systems. This may be due to the dominant separate effect of the pupillary light reflex (PLR), which shrinks the pupil when light intensity increases. In this dissertation, an adaptive interference canceller (AIC) system using the H∞ time-varying (HITV) adaptive algorithm was developed to minimize the impact of the PLR on the measured pupil diameter signal. The modified pupil diameter (MPD) signal, obtained from the AIC was expected to reflect primarily the pupillary affective responses (PAR) of the subject. Additional manipulations of the AIC output resulted in a processed MPD (PMPD) signal, from which a classification feature, PMPDmean, was extracted. This feature was used to train and test a support vector machine (SVM), for the identification of stress states in the subject from whom the pupil diameter signal was recorded, achieving an accuracy rate of 77.78%. The advantages of affective recognition through the PD signal were verified by comparatively investigating the classification of stress and relaxation states through features derived from the simultaneously recorded galvanic skin response (GSR) and blood volume pulse (BVP) signals, with and without the PD feature. The discriminating potential of each individual feature extracted from GSR, BVP and PD was studied by analysis of its receiver operating characteristic (ROC) curve. The ROC curve found for the PMPDmean feature encompassed the largest area (0.8546) of all the single-feature ROCs investigated. The encouraging results seen in affective sensing based on pupil diameter monitoring were obtained in spite of intermittent illumination increases purposely introduced during the experiments. Therefore, these results confirmed the benefits of using the AIC implementation with the HITV adaptive algorithm to isolate the PAR and the potential of using PD monitoring to sense the evolving affective states of a computer user.