953 resultados para Diffusion in hydrology
Resumo:
Quartz crystals in sandstones at depths of 1200 m–1400 m below the surface appear to reach a solubility equilibrium with the 4He-concentration in the surrounding pore- or groundwater after some time. A rather high 4Heconcentration of 4.5x10E-3 cc STP 4He/cm3 of water measured in a groundwater sample would for instance maintain a He pressure of 0.47 atm in a related volume. This value is equal within analytical error to the pressure deduced from the measured helium content of the quartz and its internal helium-accessible volume. To determine this volume, quartz crystals of 0.1 to 1 mm were separated from sandstones and exposed to a helium gas pressure of 32 atm at a temperature of 290°C for up to 2 months. By crushing, melting or isothermal heating the helium was then extracted from the helium saturated samples. Avolume on the order of 0.1% of the crystal volume is only accessible to helium atoms but not to argon atoms or water molecules. By monitoring the diffusive loss of He from the crystals at 350°C an effective diffusion constant on the order of 10E-9 cm2/s is estimated. Extrapolation to the temperature of 70°C in the sediments at a depth of 1400 m gives a typical time of about 100 000 years to reach equilibrium between helium in porewaters and the internal He-accessible volume of quartz crystals. In a geologic situation with stagnant pore- or groundwaters in sediments it therefore appears to be possible with this new method to deduce a 4He depth profile for porewaters in impermeable rocks based on their mineral record.
Resumo:
We report numerically and analytically estimated values for the Hurst exponent for a recently proposed non-Markovian walk characterized by amnestically induced persistence. These results are consistent with earlier studies showing that log-periodic oscillations arise only for large memory losses of the recent past. We also report numerical estimates of the Hurst exponent for non-Markovian walks with diluted memory. Finally, we study walks with a fractal memory of the past for a Thue-Morse and Fibonacci memory patterns. These results are interpreted and discussed in the context of the necessary and sufficient conditions for the central limit theorem to hold.
Resumo:
The dynamics and mechanism of migration of a vacancy point defect in a two-dimensional (2D) colloidal crystal are studied using numerical simulations. We find that the migration of a vacancy is always realized by topology switching between its different configurations. From the temperature dependence of the topology switch frequencies, we obtain the activation energies for possible topology transitions associated with the vacancy diffusion in the 2D crystal. (C) 2011 American Institute of Physics. [doi:10.1063/1.3615287]
Resumo:
We have measured the spatial diffusion of atoms in a three-dimensional sigma(+)-sigma(-) optical molasses over twenty milliseconds timescale, starting from the initial interaction of the atoms with the molasses. We find that the diffusion constants agree well with a linear model for these short time scales and also compare favourably to other studies of diffusion made over longer time scales. These measurements enable us to quantify the detection method known as freezing molasses. We discuss this method, for detecting and measuring the momentum distribution of cold atoms, which relies on the slow diffusion of atoms in optical molasses to produce a freeze-frame of the spatial distribution of the atoms. This method enables a longer interrogation interval, providing a greatly increased signal-to-noise ratio. (C) 1998 Elsevier Science B.V.
Resumo:
Molecular dynamics simulations of carbon atom depositions are used to investigate energy diffusion from the impact zone. A modified Stillinger-Weber potential models the carbon interactions for both sp2 and sp3 bonding. Simulations were performed on 50 eV carbon atom depositions onto the (111) surface of a 3.8 x 3.4 x 1.0 nm diamond slab containing 2816 atoms in 11 layers of 256 atoms each. The bottom layer was thermostated to 300 K. At every 100th simulation time step (27 fs), the average local kinetic energy, and hence local temperature, is calculated. To do this the substrate is divided into a set of 15 concentric hemispherical zones, each of thickness one atomic diameter (0.14 nm) and centered on the impact point. A 50-eV incident atom heats the local impact zone above 10 000 K. After the initial large transient (200 fs) the impact zone has cooled below 3000 K, then near 1000 K by 1 ps. Thereafter the temperature profile decays approximately as described by diffusion theory, perturbed by atomic scale fluctuations. A continuum model of classical energy transfer is provided by the traditional thermal diffusion equation. The results show that continuum diffusion theory describes well energy diffusion in low energy atomic deposition processes, at distance and time scales larger than 1.5 nm and 1-2 ps, beyond which the energy decays essentially exponentially. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Resumo:
Polymer hydrogels based upon methacrylates are used extensively in the pharmaceutical industry, particularly as controlled release drug delivery systems. These materials are generally prepared by chemically initiated polymerization, but this can lead to the presence of unwanted initiator fragments in the polymer matrix. In the present work, initiation of polymerization by gamma-irradiation of hydroxyethyl methacrylate, with and without added crosslinkers, has been investigated, and the diffusion coefficients for water in the resulting polymers have been measured through mass uptake by the polymers. The diffusion of water in poly(hydroxyethyl methacrylate) at 310 K was found to be Fickian, with a diffusion coefficient of 1.96 +/- 0.1 x 10(11) m(2) s(-1) and an equilibrium water content of 58%, NMR imaging analyses confirmed the adherance to a Fickian model of the diffusion of water into polymer cylinders. The incorporation of small amounts (0.2-0.5 wt%) of added ethyleneglycol-dimethacrylate-based crosslinkers was found to have only a small effect on the diffusion coefficient and the equilibrium water content for the copolymers. (C) 1999 Society of Chemical Industry.
Resumo:
Background The development of products and services for health care systems is one of the most important phenomena to have occurred in the field of health care over the last 50 years. It generates significant commercial, medical and social results. Although much has been done to understand how health technologies are adopted and regulated in developed countries, little attention has been paid to the situation in low- and middle-income countries (LMICs). Here we examine the institutional environment in which decisions are made regarding the adoption of expensive medical devices into the Brazilian health care system. Methods We used a case study strategy to address our research question. The empirical work relied on in-depth interviews (N = 16) with representatives of a wide range of actors and stakeholders that participate in the process of diffusion of CT (computerized tomography) scanners in Brazil, including manufacturers, health care organizations, medical specialty societies, health insurance companies, regulatory agencies and the Ministry of Health. Results The adoption of CT scanners is not determined by health policy makers or third-party payers of public and private sectors. Instead, decisions are primarily made by administrators of individual hospitals and clinics, strongly influenced by both physicians and sales representatives of the medical industry who act as change agents. Because this process is not properly regulated by public authorities, health care organizations are free to decide whether, when and how they will adopt a particular technology. Conclusions Our study identifies problems in how health care systems in LMICs adopt new, expensive medical technologies, and suggests that a set of innovative approaches and policy instruments are needed in order to balance the institutional and professional desire to practise a modern and expensive medicine in a context of health inequalities and basic health needs.
Resumo:
We study the transport of a subcritical Lennard-Jones fluid in a cylindrical nanopore, using a combination of equilibrium and nonequilibrium as well as dual control volume grand canonical molecular dynamics methods. We show that all three techniques yield the same value of the transport coefficient for diffusely reflecting pore walls, even in the presence of viscous transport. We also demonstrate that the classical Knudsen mechanism is not manifested, and that a combination of viscous flow and momentum exchange at the pore wall governs the transport over a wide range of densities.
Resumo:
A rotary thermal diffusion column with the inner cylinder rotating and the outer cylinder static was used to separate n-heptane-benzene mixtures at different speeds of rotation. The results show that the column efficiency depends on the speed of rotation. For the optimum speed the increase in efficiency relative to the static column was of the order of 8%. The role of the geometric irregularities in the annulus width on performance of the rotary column is also discussed.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
We study the relationship between openness and payment system development. In particular, we analyze how the existence of technology diffusion from a more developed country fosters a transformation of payment choice in a less developed country. We apply our analysis to Mexico. Economic growth in Mexico was not high enough to cause a transformation of payment choice observed in the data after 2001. We argue that the switch towards electronic payments can be attributed to openness and related payment technology spillovers from the US in the context of NAFTA.
Resumo:
In alkaline lavas, the chemical zoning of megacrystals of spinel is due to the cationic exchange between the latter and the host lava. The application of Fick's law to cationic diffusion profiles allows to calculate the time these crystals have stayed in the lava. Those which are in a chemical equilibrium were in contact with the lava during 20 to 30 days, whereas megacrystals lacking this equilibrium were in contact only for 3 or 4 days. The duration of the rise of an ultrabasic nodule in the volcanic chimney was calculated by applying Stokes' law.
Resumo:
Microstructural features of La2/3Ca1/3MnO3 layers of various thicknesses grown on top of 001 LaAlO3 substrates are studied by using transmission electron microscopy and electron energy loss spectroscopy. Films are of high microstructural quality but exhibit some structural relaxation and mosaicity both when increasing thickness or after annealing processes. The existence of a cationic segregation process of La atoms toward free surface has been detected, as well as a Mn oxidation state variation through layer thickness. La diffusion would lead to a Mn valence change and, in turn, to reduced magnetization.