996 resultados para Diffusion Problems
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work presents a numerical study of the tri-dimensional convection-diffusion equation by the control-volume-based on finite-element method using quadratic hexahedral elements. Considering that the equation governing this problem in its main variable may represent several properties, including temperature, turbulent kinetic energy, viscous dissipation rate of the turbulent kinetic energy, specific dissipation rate of the turbulent kinetic energy, or even the concentration of a contaminant in a given medium, among others, the wide applicability of this problem is thus evidenced. Three cases of temperature distributions will be studied specifically in this work, in addition to one case of pollutant dispersion upon analysis of the concentration of a contaminant in a fixed flow point. Some comparisons will be carried out against works found in the open literature, while others will be done according to each phenomenon characteristics.
Resumo:
We present and analyze a subgrid viscosity Lagrange-Galerk in method that combines the subgrid eddy viscosity method proposed in W. Layton, A connection between subgrid scale eddy viscosity and mixed methods. Appl. Math. Comp., 133: 14 7-157, 2002, and a conventional Lagrange-Galerkin method in the framework of P1⊕ cubic bubble finite elements. This results in an efficient and easy to implement stabilized method for convection dominated convection diffusion reaction problems. Numerical experiments support the numerical analysis results and show that the new method is more accurate than the conventional Lagrange-Galerkin one.
Resumo:
The aim of this paper is to provide a comprehensive study of some linear non-local diffusion problems in metric measure spaces. These include, for example, open subsets in ℝN, graphs, manifolds, multi-structures and some fractal sets. For this, we study regularity, compactness, positivity and the spectrum of the stationary non-local operator. We then study the solutions of linear evolution non-local diffusion problems, with emphasis on similarities and differences with the standard heat equation in smooth domains. In particular, we prove weak and strong maximum principles and describe the asymptotic behaviour using spectral methods.
Resumo:
We propose an adaptive mesh refinement strategy based on exploiting a combination of a pre-processing mesh re-distribution algorithm employing a harmonic mapping technique, and standard (isotropic) mesh subdivision for discontinuous Galerkin approximations of advection-diffusion problems. Numerical experiments indicate that the resulting adaptive strategy can efficiently reduce the computed discretization error by clustering the nodes in the computational mesh where the analytical solution undergoes rapid variation.
Resumo:
This paper is concerned with an overview of upwinding schemes, and further nonlinear applications of a recently introduced high resolution upwind differencing scheme, namely the ADBQUICKEST [V.G. Ferreira, F.A. Kurokawa, R.A.B. Queiroz, M.K. Kaibara, C.M. Oishi, J.A.Cuminato, A.F. Castelo, M.F. Tomé, S. McKee, assessment of a high-order finite difference upwind scheme for the simulation of convection-diffusion problems, International Journal for Numerical Methods in Fluids 60 (2009) 1-26]. The ADBQUICKEST scheme is a new TVD version of the QUICKEST [B.P. Leonard, A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Computer Methods in Applied Mechanics and Engineering 19 (1979) 59-98] for solving nonlinear balance laws. The scheme is based on the concept of NV and TVD formalisms and satisfies a convective boundedness criterion. The accuracy of the scheme is compared with other popularly used convective upwinding schemes (see, for example, Roe (1985) [19], Van Leer (1974) [18] and Arora & Roe (1997) [17]) for solving nonlinear conservation laws (for example, Buckley-Leverett, shallow water and Euler equations). The ADBQUICKEST scheme is then used to solve six types of fluid flow problems of increasing complexity: namely, 2D aerosol filtration by fibrous filters; axisymmetric flow in a tubular membrane; 2D two-phase flow in a fluidized bed; 2D compressible Orszag-Tang MHD vortex; axisymmetric jet onto a flat surface at low Reynolds number and full 3D incompressible flows involving moving free surfaces. The numerical simulations indicate that this convective upwinding scheme is a good generic alternative for solving complex fluid dynamics problems. © 2012.
Resumo:
There are several heat and mass diffusion problems which affect to the IFC chamber design. New simulation models and experiments are needed to take into account the extreme conditions due to ignition pulses and neutron flux
Resumo:
The analysis of deformation in soils is of paramount importance in geotechnical engineering. For a long time the complex behaviour of natural deposits defied the ingenuity of engineers. The time has come that, with the aid of computers, numerical methods will allow the solution of every problem if the material law can be specified with a certain accuracy. Boundary Techniques (B.E.) have recently exploded in a splendid flowering of methods and applications that compare advantegeously with other well-established procedures like the finite element method (F.E.). Its application to soil mechanics problems (Brebbia 1981) has started and will grow in the future. This paper tries to present a simple formulation to a classical problem. In fact, there is already a large amount of application of B.E. to diffusion problems (Rizzo et al, Shaw, Chang et al, Combescure et al, Wrobel et al, Roures et al, Onishi et al) and very recently the first specific application to consolidation problems has been published by Bnishi et al. Here we develop an alternative formulation to that presented in the last reference. Fundamentally the idea is to introduce a finite difference discretization in the time domain in order to use the fundamental solution of a Helmholtz type equation governing the neutral pressure distribution. Although this procedure seems to have been unappreciated in the previous technical literature it is nevertheless effective and straightforward to implement. Indeed for the special problem in study it is perfectly suited, because a step by step interaction between the elastic and flow problems is needed. It allows also the introduction of non-linear elastic properties and time dependent conditions very easily as will be shown and compares well with performances of other approaches.
Resumo:
We propose a mathematically well-founded approach for locating the source (initial state) of density functions evolved within a nonlinear reaction-diffusion model. The reconstruction of the initial source is an ill-posed inverse problem since the solution is highly unstable with respect to measurement noise. To address this instability problem, we introduce a regularization procedure based on the nonlinear Landweber method for the stable determination of the source location. This amounts to solving a sequence of well-posed forward reaction-diffusion problems. The developed framework is general, and as a special instance we consider the problem of source localization of brain tumors. We show numerically that the source of the initial densities of tumor cells are reconstructed well on both imaging data consisting of simple and complex geometric structures.
Resumo:
Subcycling algorithms which employ multiple timesteps have been previously proposed for explicit direct integration of first- and second-order systems of equations arising in finite element analysis, as well as for integration using explicit/implicit partitions of a model. The author has recently extended this work to implicit/implicit multi-timestep partitions of both first- and second-order systems. In this paper, improved algorithms for multi-timestep implicit integration are introduced, that overcome some weaknesses of those proposed previously. In particular, in the second-order case, improved stability is obtained. Some of the energy conservation properties of the Newmark family of algorithms are shown to be preserved in the new multi-timestep extensions of the Newmark method. In the first-order case, the generalized trapezoidal rule is extended to multiple timesteps, in a simple way that permits an implicit/implicit partition. Explicit special cases of the present algorithms exist. These are compared to algorithms proposed previously. (C) 1998 John Wiley & Sons, Ltd.
Resumo:
Reaction-diffusion problems, finite elements, unstructured grid, grid adaption, W-method, stiffness, local partitioning, excitable medium, spiral wave drift
Resumo:
Much of the analytical modeling of morphogen profiles is based on simplistic scenarios, where the source is abstracted to be point-like and fixed in time, and where only the steady state solution of the morphogen gradient in one dimension is considered. Here we develop a general formalism allowing to model diffusive gradient formation from an arbitrary source. This mathematical framework, based on the Green's function method, applies to various diffusion problems. In this paper, we illustrate our theory with the explicit example of the Bicoid gradient establishment in Drosophila embryos. The gradient formation arises by protein translation from a mRNA distribution followed by morphogen diffusion with linear degradation. We investigate quantitatively the influence of spatial extension and time evolution of the source on the morphogen profile. For different biologically meaningful cases, we obtain explicit analytical expressions for both the steady state and time-dependent 1D problems. We show that extended sources, whether of finite size or normally distributed, give rise to more realistic gradients compared to a single point-source at the origin. Furthermore, the steady state solutions are fully compatible with a decreasing exponential behavior of the profile. We also consider the case of a dynamic source (e.g. bicoid mRNA diffusion) for which a protein profile similar to the ones obtained from static sources can be achieved.
First order k-th moment finite element analysis of nonlinear operator equations with stochastic data
Resumo:
We develop and analyze a class of efficient Galerkin approximation methods for uncertainty quantification of nonlinear operator equations. The algorithms are based on sparse Galerkin discretizations of tensorized linearizations at nominal parameters. Specifically, we consider abstract, nonlinear, parametric operator equations J(\alpha ,u)=0 for random input \alpha (\omega ) with almost sure realizations in a neighborhood of a nominal input parameter \alpha _0. Under some structural assumptions on the parameter dependence, we prove existence and uniqueness of a random solution, u(\omega ) = S(\alpha (\omega )). We derive a multilinear, tensorized operator equation for the deterministic computation of k-th order statistical moments of the random solution's fluctuations u(\omega ) - S(\alpha _0). We introduce and analyse sparse tensor Galerkin discretization schemes for the efficient, deterministic computation of the k-th statistical moment equation. We prove a shift theorem for the k-point correlation equation in anisotropic smoothness scales and deduce that sparse tensor Galerkin discretizations of this equation converge in accuracy vs. complexity which equals, up to logarithmic terms, that of the Galerkin discretization of a single instance of the mean field problem. We illustrate the abstract theory for nonstationary diffusion problems in random domains.
Resumo:
We present a mathematical model describing the inward solidification of a slab, a circular cylinder and a sphere of binary melt kept below its equilibrium freezing temperature. The thermal and physical properties of the melt and solid are assumed to be identical. An asymptotic method, valid in the limit of large Stefan number is used to decompose the moving boundary problem for a pure substance into a hierarchy of fixed-domain diffusion problems. Approximate, analytical solutions are derived for the inward solidification of a slab and a sphere of a binary melt which are compared with numerical solutions of the unapproximated system. The solutions are found to agree within the appropriate asymptotic regime of large Stefan number and small time. Numerical solutions are used to demonstrate the dependence of the solidification process upon the level of impurity and other parameters. We conclude with a discussion of the solutions obtained, their stability and possible extensions and refinements of our study.
Resumo:
In this work we continue the analysis of the asymptotic dynamics of reaction-diffusion problems in a dumbbell domain started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2) (2006) 551-597]. Here we study the limiting problem, that is, an evolution problem in a ""domain"" which consists of an open, bounded and smooth set Omega subset of R(N) with a curve R(0) attached to it. The evolution in both parts of the domain is governed by a parabolic equation. In Omega the evolution is independent of the evolution in R(0) whereas in R(0) the evolution depends on the evolution in Omega through the continuity condition of the solution at the junction points. We analyze in detail the linear elliptic and parabolic problem, the generation of linear and nonlinear semigroups, the existence and structure of attractors. (C) 2009 Elsevier Inc. All rights reserved.