1000 resultados para Diffuse radiation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Avaliou-se a evolução anual das componentes global, direta e difusa da radiação solar incidente em superfícies inclinadas a 12,85; 22,85 e 32,85º, com face voltada ao Norte, em Botucatu-SP. Foram obtidas frações radiométricas para cada componente da radiação nas superfícies supracitadas, através de razões com a radiação global e a do topo da atmosfera. A sazonalidade foi avaliada através das médias mensais dos valores diários. As medidas ocorreram entre 04/1998 e 07/2001, em 22,85º; 08/2001 e 02/2003, em 12,85º; e de 03/2003 a 12/2007, em 32,85º, com medidas concomitantes no plano horizontal (referência). Os níveis das radiações global e direta nos planos inclinados foram inferiores no período de verão e superiores entre os equinócios, quando comparadas ao plano horizontal. A radiação difusa nas superfícies inclinadas foi inferior na maioria dos meses, com perdas de até 65%. Ocorreu uma tendência de aumento das diferenças entre as superfícies horizontal e inclinada com o incremento do ângulo em todas as componentes e frações da radiação incidente. A evolução anual das precipitações pluviométricas e da razão de nebulosidade afetou diretamente a transmissividade atmosférica das componentes direta e difusa na região.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global radiation incident on a tilted surfaces consists of components direct, diffuse and reflected from the ground. On a hourly database, the direct radiation can be calculated by geometric projections (ratio of the incidence angle to the solar zenith angle). The reflected radiation has a small effect on calculations and may be calculated with an isotropic model. Both components presents dependence of measures in incidence or horizontal surface. The great difficulty is to evaluate the diffuse radiation by variations of circumsolar, brightness horizontal, isotropic and anisotropic subcomponents. This study evaluated twenty models to estimate hourly diffuse radiation incident on tilted surfaces at 12.85° (latitude - 10°), 22.85° (latitude) and 32.85° (latitude + 10°) facing to North, under different cloudiness sky conditions, in Botucatu, São Paulo State, Brazil (22°53' S, 48°26' W and 786 m above the mean sea level). In contrast, models for estimating the diffuse component show major differences, which justify the validation for local calibrations. There is a decrease of the maximum total radiation scattered with increasing atmospheric transmissivity and inclination angle. The best results are obtained by anisotropic models: Ma and Iqbal, Hay, Reindl et al. and Willmott; isotropic: Badescu and Koronakis, and the Circumsolar model. The increase of the inclination angle allows for a reduction in the performance of statistical parametric models for estimating the hourly diffuse radiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work describes the measurement effort for direct normal irradiance (DNI) evaluation in the sunny south of Portugal, with a network of eight radiation measurement stations in several locations (including Évora) providing a good coverage of the region. This new initiative for DNI measurement will still need many years (typically 10 or more) to produce a time series which can claim having long term statistical value. This problem can, however, be temporarily mitigated by measuring DNI at the same time as GHI and DHI, in a place where long term series dating back, already exist for those two. It so happens that a long term series (20 years) of global and diffuse solar irradiation exists for the location Évora. So the expectation is to establish correlations with the goal of attributing at least some long term statistical significance to the short and recent DNI series. The paper describes the setup of the measuring stations and presents the preliminary measurements obtained. It further presents the first correlations of monthly averages between normal beam (DNI), global and diffuse radiation. It then uses these correlations, admittedly without acceptable statistical significance (short series of less than one year of measured data), to exemplify how to get a prediction of long term DNI for Évora. This preliminary obtained value is compared to that predicted by the commercial data from Meteonorm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar radiation data is crucial for the design of energy systems based on the solar resource. Since diffuse radiation measurements are not always available in the archive data series, either due to the inexistence of measuring equipment, shading device misplacement or missing data, models to generate these data are needed. In this work, one year of hourly and daily horizontal solar global and diffuse irradiation measurements in Évora are used to establish a new relation between the diffuse radiation and the clearness index. The proposed model includes a fitting parameter, which was adjusted through a simple optimization procedure to minimize the Least Square Error as compared to measurements. A comparison against several other fitting models presented in the literature was also carried out using the Root Mean Square Error as statistical indicator, and it was found that the present model is more accurate than the previous fitting models for the diffuse radiation data in Évora.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A technique for computing the spectral and angular (both the zenith and azimuthal) distribution of the solar energy reaching the surface of earth and any other plane in the atmosphere has been developed. Here the computer code LOWTRAN is used for getting the atmospheric transmittances in conjunction with two approximate procedures: one based on the Eddington method and the other on van de Hulst's adding method, for solving the equation of radiative transfer to obtain the diffuse radiation in the cloud-free situation. The aerosol scattering phase functions are approximated by the Hyeney-Greenstein functions. When the equation of radiative transfer is solved using the adding method, the azimuthal and zenith angle dependence of the scattered radiation is evaluated, whereas when the Eddington technique is utilized only the total downward flux of scattered solar radiation is obtained. Results of the diffuse and beam components of solar radiation received on surface of earth compare very well with those computed by other methods such as the more exact calculations using spherical harmonics and when atmospheric conditions corresponding to that prevailing locally in a tropical location (as in India) are used as inputs the computed values agree closely with the measured values.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measurements of global and diffuse solar-radiation, at the Earth's surface, carried out from May 1994 to June 1999 in São Paulo City, Brazil, were used to develop correlation models to estimate hourly, daily and monthly values of diffuse solar-radiation on horizontal surfaces. The polynomials derived by linear regression fitting were able to model satisfactorily the daily and monthly values of diffuse radiation. The comparison with models derived for other places demonstrates some differences related mainly to altitude effects. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evaluation has been made on the monthly and annual average diurnal evolution of the hourly diffuse radiation as well as its radiometric fractions on surfaces inclined at 12.85, 22.85 and 32.85° to face North, in climate conditions of Botucatu, São Paulo, Brazil (22.85° S and 48.43° W). Measurements were made between 04/1998 to 08/2001 for 22.85°; 09/2001 to 02/2003 for 12.85° and 01/2004 to 12/2007 for 32.85°, with concomitant measures in the horizontal. For all surfaces the diffuse radiation was obtained from different method. Assessment has been performed as well on the radiometric fractions obtained from the ratio of diffuse radiation and global radiation (KDH and KDβ) and between radiation and diffuse radiation at the top of the atmosphere (KʹDH and KʹDβ) for the horizontal and tilted surfaces in hourly partition. The diffuse radiation levels were dependent on variations in precipitation and cloudiness. There was an increase in the differences between the diffuse radiation and the radiometric fractions with the increment of the angle, and in horizontally, which affected higher levels of diffuse radiation in spring and summer. The values of KDH and KDβ present in an inverse behavior were compared to diffuse radiation and theydecreased in the southern passage due to the increase of the direct component in the total of incident radiation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the wheatbelt of eastern Australia, rainfall shifts from winter dominated in the south (South Australia, Victoria) to summer dominated in the north (northern New South Wales, southern Queensland). The seasonality of rainfall, together with frost risk, drives the choice of cultivar and sowing date, resulting in a flowering time between October in the south and August in the north. In eastern Australia, crops are therefore exposed to contrasting climatic conditions during the critical period around flowering, which may affect yield potential, and the efficiency in the use of water (WUE) and radiation (RUE). In this work we analysed empirical and simulated data, to identify key climatic drivers of potential water- and radiation-use efficiency, derive a simple climatic index of environmental potentiality, and provide an example of how a simple climatic index could be used to quantify the spatial and temporal variability in resource-use efficiency and potential yield in eastern Australia. Around anthesis, from Horsham to Emerald, median vapour pressure deficit (VPD) increased from 0.92 to 1.28 kPa, average temperature increased from 12.9 to 15.2°C, and the fraction of diffuse radiation (FDR) decreased from 0.61 to 0.41. These spatial gradients in climatic drivers accounted for significant gradients in modelled efficiencies: median transpiration WUE (WUEB/T) increased southwards at a rate of 2.6% per degree latitude and median RUE increased southwards at a rate of 1.1% per degree latitude. Modelled and empirical data confirmed previously established relationships between WUEB/T and VPD, and between RUE and photosynthetically active radiation (PAR) and FDR. Our analysis also revealed a non-causal inverse relationship between VPD and radiation-use efficiency, and a previously unnoticed causal positive relationship between FDR and water-use efficiency. Grain yield (range 1-7 t/ha) measured in field experiments across South Australia, New South Wales, and Queensland (n = 55) was unrelated to the photothermal quotient (Pq = PAR/T) around anthesis, but was significantly associated (r2 = 0.41, P < 0.0001) with newly developed climatic index: a normalised photothermal quotient (NPq = Pq . FDR/VPD). This highlights the importance of diffuse radiation and vapour pressure deficit as sources of variation in yield in eastern Australia. Specific experiments designed to uncouple VPD and FDR and more mechanistic crop models might be required to further disentangle the relationships between efficiencies and climate drivers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The climatic effects of Solar Radiation Management (SRM) geoengineering have been often modeled by simply reducing the solar constant. This is most likely valid only for space sunshades and not for atmosphere and surface based SRM methods. In this study, a global climate model is used to evaluate the differences in the climate response to SRM by uniform solar constant reduction and stratospheric aerosols. Our analysis shows that when global mean warming from a doubling of CO2 is nearly cancelled by both these methods, they are similar when important surface and tropospheric climate variables are considered. However, a difference of 1 K in the global mean stratospheric (61-9.8 hPa) temperature is simulated between the two SRM methods. Further, while the global mean surface diffuse radiation increases by similar to 23 % and direct radiation decreases by about 9 % in the case of sulphate aerosol SRM method, both direct and diffuse radiation decrease by similar fractional amounts (similar to 1.0 %) when solar constant is reduced. When CO2 fertilization effects from elevated CO2 concentration levels are removed, the contribution from shaded leaves to gross primary productivity (GPP) increases by 1.8 % in aerosol SRM because of increased diffuse light. However, this increase is almost offset by a 15.2 % decline in sunlit contribution due to reduced direct light. Overall both the SRM simulations show similar decrease in GPP (similar to 8 %) and net primary productivity (similar to 3 %). Based on our results we conclude that the climate states produced by a reduction in solar constant and addition of aerosols into the stratosphere can be considered almost similar except for two important aspects: stratospheric temperature change and the consequent implications for the dynamics and the chemistry of the stratosphere and the partitioning of direct versus diffuse radiation reaching the surface. Further, the likely dependence of global hydrological cycle response on aerosol particle size and the latitudinal and height distribution of aerosols is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a climatic and statistical analysis of global, direct horizontal and diffuse radiation from a database of solar radiation measured from 1996 to 2006 in the city of Botucatu, SP, Brazil. Variation intervals of hourly and daily irradiation, annual mean 〈H̄G〉, 〈H̄bh〉 and 〈H̄d〉 irradiation, monthly mean 〈H̄G〉, 〈H̄ bh〉 and 〈H̄d〉 irradiation and monthly mean 〈K̄t〉, 〈K̄bh〉 and 〈K̄d〉 fractions were determined. Results showed that values of hourly and daily annual mean irradiation were as follows: 〈H̄G〉=1.49MJ/m2 and 〈H̄ G〉=17.74MJ/m2; 〈H̄bh〉=0. 90MJ/m2 and 〈H̄bh〉=10.33MJ/m2 and 〈H̄d〉=0.57 MJ/m2 and 〈H̄d〉=7.09MJ/m2, respectively. Variation intervals of hourly monthly mean irradiation were as follows: 〈H̄G〉 ranged from 1.65MJ/m2 in March to 1.16MJ/m2 in June; 〈H̄bh〉 ranged from 1.06MJ/m2 in April to 0.79MJ/m2 in June, and 〈H̄d〉 ranged from 0.70MJ/m2 in January to 0.37MJ/m2 in June and July. Similarly, daily 〈H̄ G〉 irradiation ranged from 21.35MJ/m2 in November to 12.94MJ/m2 in June; 〈H̄bh〉 ranged from 11.83MJ/m2 in April to 8.49MJ/m2 in June, and 〈H̄d〉 ranged from 10.29MJ/m2 in December to 4.38MJ/m2 in June. Variation intervals of hourly monthly mean fractions were as follows: 〈K̄t〉 ranged from 43.5% in January to 54.2% in April; 〈K̄bh〉 ranged from 33.6% in January to 58.0% in April and 〈K̄d〉 ranged from 66.4% in January to 42.0% in April. In the same way, daily 〈K̄ t〉 fractions ranged from 45.5% in January to 59.8% in August; 〈K̄bh〉 ranged from 38.9% in January to 62.0% in August and 〈K̄d〉 ranged from 61.1% in January to 37.7% in July.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O avanço da fronteira agrícola na Amazônia, da forma como vem sendo realizado, tem deixado a comunidade cada vez mais preocupada ante os possíveis impactos ambientais decorrentes desta mudança no uso da terra, devido à grande importância que a Amazônia representa para o clima global. Neste trabalho avaliaram-se os componentes do balanço de radiação à superfície, ao longo do ciclo da soja (Glycine Max (L.) Merryl), em uma área de avanço da fronteira agrícola na Amazônia. Os componentes do balanço de radiação foram monitorados continuamente durante o ciclo da soja, em 2006 e 2007, em uma área de 200 ha de extensão. O monocultivo da soja na Amazônia apresentou uma contínua mudança nos componentes do balanço de radiação, tendo como consequência uma redução na energia disponível para o ambiente devido o aumento na reflexão da superfície. Observou-se uma importante contribuição da radiação solar difusa na interceptação da soja durante dias nublados, mesmo sob condições de dossel incompleto. Por outro lado, após o fechamento do dossel, a interação da soja com a radiação acontece de forma semelhante, independente da condição de nebulosidade.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O objetivo deste trabalho foi avaliar a eficiência da soja (Glycine max) em interceptar e usar a radiação solar em condições naturais de campo, na região Amazônica do Brasil. Os dados de crescimento e área foliar da soja e dados meteorológicos foram obtidos em um experimento agrometeorológico realizado em Paragominas, PA, em 2007 e 2008. A eficiência do uso da radiação (ERU) foi obtida pela razão entre a produção de massa de matéria seca da parte aérea e o acúmulo da radiação fotossinteticamente ativa interceptada (RFA), até os 99 e 95 dias após a semeadura, em 2007 e 2008, respectivamente. As condições climáticas durante o experimento foram muito distintas, com redução na precipitação em 2007, iniciada na metade do ciclo de cultivo de soja, em consequência do fenômeno El Niño. Observou-se uma importante redução no índice de área foliar e na produção de massa de matéria seca durante 2007. Em tais condições de campo na região Amazônica, os valores de EUR foram de 1,46 e 1,99 g MJ-1 RFA, nos experimentos de 2007 e 2008, respectivamente. A provável razão para as diferenças encontradas entre os anos pode estar associada à redução de água em 2007, em conjunto com a elevada temperatura do ar e o deficit de pressão de vapor, e também ao aumento na fração de radiação difusa que atingiu a superfície do solo em 2008.