854 resultados para Diffuse Axonal Injury


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Assessment, whether location of impact causing different facial fracture patterns was associated with diffuse axonal injury in patients with severe closed head injury. METHODS: Retrospectively all patients referred to the Trauma Unit of the University Hospital of Zurich, Switzerland between 1996 and 2002 presenting with severe closed head injuries (Abbreviated Injury Scale (AIS) (face) of 2-4 and an AIS (head and neck) of 3-5) were assessed according to the Glasgow Coma Scale (GCS) and the Injury Severity Score (ISS). Facial fracture patterns were classified as resulting from frontal, oblique or lateral impact. All patients had undergone computed tomography. The association between impact location and diffuse axonal injury when correcting for the level of consciousness (using the Glasgow scale) and severity of injury (using the ISS) was calculated with a multivariate regression analysis. RESULTS: Of 200 screened patients, 61 fulfilled the inclusion criteria for severe closed head injury. The medians (interquartile ranges 25;75) for GCS, AIS(face) AIS(head and neck) and ISS were 3 (3;13), 2 (2;4), 4 (4;5) and 30 (24;41), respectively. A total of 51% patients had frontal, 26% had an oblique and 23% had lateral trauma. A total of 21% patients developed diffuse axonal injury (DAI) when compared with frontal impact, the likelihood of diffuse axonal injury increased 11.0 fold (1.7-73.0) in patients with a lateral impact. CONCLUSIONS: Clinicians should be aware of the substantial increase of diffuse axonal injury related to lateral impact in patients with severe closed head injuries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following axotomy, the contact between motoneurons and muscle fibers is disrupted, triggering a retrograde reaction at the neuron cell body within the spinal cord. Together with chromatolysis, a hallmark of such response to injury is the elimination of presynaptic terminals apposing to the soma and proximal dendrites of the injured neuron. Excitatory inputs are preferentially eliminated, leaving the cells under an inhibitory influence during the repair process. This is particularly important to avoid glutamate excitotoxicity. Such shift from transmission to a regeneration state is also reflected by deep metabolic changes, seen by the regulation of several genes related to cell survival and axonal growth. It is unclear, however, how exactly synaptic stripping occurs, but there is substantial evidence that glial cells play an active role in this process. In one hand, immune molecules, such as the major histocompatibility complex (MHC) class I, members of the complement family and Toll-like receptors are actively involved in the elimination/reapposition of presynaptic boutons. On the other hand, plastic changes that involve sprouting might be negatively regulated by extracellular matrix proteins such as Nogo-A, MAG and scar-related chondroitin sulfate proteoglycans. Also, neurotrophins, stem cells, physical exercise and several drugs seem to improve synaptic stability, leading to functional recovery after lesion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Cognitive complaints, such as poor concentration and memory deficits, are frequent after whiplash injury and play an important role in disability. The origin of these complaints is discussed controversially. Some authors postulate brain lesions as a consequence of whiplash injuries. Potential diffuse axonal injury (DAI) with subsequent atrophy of the brain and ventricular expansion is of particular interest as focal brain lesions have not been documented so far in whiplash injury. OBJECTIVE: To investigate whether traumatic brain injury can be identified using a magnetic resonance (MR)-based quantitative analysis of normalized ventricle-brain ratios (VBR) in chronic whiplash patients with subjective cognitive impairment that cannot be objectively confirmed by neuropsychological testing. MATERIALS AND METHODS: MR examination was performed in 21 patients with whiplash injury and symptom persistence for 9 months on average and in 18 matched healthy controls. Conventional MR imaging (MRI) was used to assess the volumes of grey and white matter and of ventricles. The normalized VBR was calculated. RESULTS: The values of normalized VBR did not differ in whiplash patients when compared with that in healthy controls (F = 0.216, P = 0.645). CONCLUSIONS: This study does not support loss of brain tissue following whiplash injury as measured by VBR. On this basis, traumatic brain injury with subsequent DAI does not seem to be the underlying mechanism for persistent concentration and memory deficits that are subjectively reported but not objectively verifiable as neuropsychological deficits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECT: Severe traumatic brain injury (TBI) imposes a huge metabolic load on brain tissue, which can be summarized initially as a state of hypermetabolism and hyperglycolysis. In experiments O2 consumption has been shown to increase early after trauma, especially in the presence of high lactate levels and forced O2 availability. In recent clinical studies the effect of increasing O2 availability on brain metabolism has been analyzed. By their nature, however, clinical trauma models suffer from a heterogeneous injury distribution. The aim of this study was to analyze, in a standardized diffuse brain injury model, the effect of increasing the fraction of inspired O2 on brain glucose and lactate levels, and to compare this effect with the metabolism of the noninjured sham-operated brain. METHODS: A diffuse severe TBI model developed by Foda and Maramarou, et al., in which a 420-g weight is dropped from a height of 2 m was used in this study. Forty-one male Wistar rats each weighing approximately 300 g were included. Anesthesized rats were monitored by placing a femoral arterial line for blood pressure and blood was drawn for a blood gas analysis. Two time periods were defined: Period A was defined as preinjury and Period B as postinjury. During Period B two levels of fraction of inspired oxygen (FiO2) were studied: air (FiO2 0.21) and oxygen (FiO2 1). Four groups were studied including sham-operated animals: air-air-sham (AAS); air-O2-sham (AOS); air-air-trauma (AAT); and air-O2-trauma (AOT). In six rats the effect of increasing the FiO2 on serum glucose and lactate was analyzed. During Period B lactate values in the brain determined using microdialysis were significantly lower (p < 0.05) in the AOT group than in the AAT group and glucose values in the brain determined using microdialysis were significantly higher (p < 0.04). No differences were demonstrated in the other groups. Increasing the FiO2 had no significant effect on the serum levels of glucose and lactate. CONCLUSIONS: Increasing the FiO2 influences dialysate glucose and lactate levels in injured brain tissue. Using an FiO2 of 1 influences brain metabolism in such a way that lactate is significantly reduced and glucose significantly increased. No changes in dialysate glucose and lactate values were found in the noninjured brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To investigate laryngeal function and phonatory disturbance in children with traumatic brain injury (TBI), using both perceptual and instrumental techniques. Design and participants: The performance of 16 individuals with moderate to severe TBI acquired in childhood and 16 nonneurologicatly impaired control subjects was compared on a battery of perceptual (Frenchay Dysarthria Assessment, speech sample analysis) and instrumental (Aerophone II, laryngograph) assessments. Results and conclusions: As a group, the children with TBI demonstrated normal, or only minimally impaired laryngeal function, when compared with the control group, which contrasts with the significant laryngeal impairment noted in adults after TBI. Several reasons for the different findings in relation to laryngeal function in adults and children after TBI are postulated: (1) differing types of injury usually incurred by adults and children may result in a relatively decreased degree of neurologic impairment in these children, (2) differences in recovery potential between adults and children, and (3) the pediatric larynx is still developing, hence it may be better able to compensate for any impairment incurred.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A. Costanza, K. Weber, S. Gandy, C. Bouras, P. R. Hof, P. Giannakopoulos and A. Canuto (2011) Neuropathology and Applied Neurobiology37, 570-584 Contact sport-related chronic traumatic encephalopathy in the elderly: clinical expression and structural substrates Professional boxers and other contact sport athletes are exposed to repetitive brain trauma that may affect motor functions, cognitive performance, emotional regulation and social awareness. The term of chronic traumatic encephalopathy (CTE) was recently introduced to regroup a wide spectrum of symptoms such as cerebellar, pyramidal and extrapyramidal syndromes, impairments in orientation, memory, language, attention, information processing and frontal executive functions, as well as personality changes and behavioural and psychiatric symptoms. Magnetic resonance imaging usually reveals hippocampal and vermis atrophy, a cavum septum pellucidum, signs of diffuse axonal injury, pituitary gland atrophy, dilated perivascular spaces and periventricular white matter disease. Given the partial overlapping of the clinical expression, epidemiology and pathogenesis of CTE and Alzheimer's disease (AD), as well as the close association between traumatic brain injuries (TBIs) and neurofibrillary tangle formation, a mixed pathology promoted by pathogenetic cascades resulting in either CTE or AD has been postulated. Molecular studies suggested that TBIs increase the neurotoxicity of the TAR DNA-binding protein 43 (TDP-43) that is a key pathological marker of ubiquitin-positive forms of frontotemporal dementia (FTLD-TDP) associated or not with motor neurone disease/amyotrophic lateral sclerosis (ALS). Similar patterns of immunoreactivity for TDP-43 in CTE, FTLD-TDP and ALS as well as epidemiological correlations support the presence of common pathogenetic mechanisms. The present review provides a critical update of the evolution of the concept of CTE with reference to its neuropathological definition together with an in-depth discussion of the differential diagnosis between this entity, AD and frontotemporal dementia.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Approximately two percent of Finns have sequels after traumatic brain injury (TBI), and many TBI patients are young or middle-aged. The high rate of unemployment after TBI has major economic consequences for society, and traumatic brain injury often has remarkable personal consequences, as well. Structural imaging is often needed to support the clinical TBI diagnosis. Accurate early diagnosis is essential for successful rehabilition and, thus, may also influence the patient’s outcome. Traumatic axonal injury and cortical contusions constitute the majority of traumatic brain lesions. Several studies have shown magnetic resonance imaging (MRI) to be superior to computed tomography (CT) in the detection of these lesions. However, traumatic brain injury often leads to persistent symptoms even in cases with few or no findings in conventional MRI. Aims and methods: The aim of this prospective study was to clarify the role of conventional MRI in the imaging of traumatic brain injury, and to investigate how to improve the radiologic diagnostics of TBI by using more modern diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) techniques. We estimated, in a longitudinal study, the visibility of the contusions and other intraparenchymal lesions in conventional MRI at one week and one year after TBI. We used DWI-based measurements to look for changes in the diffusivity of the normal-appearing brain in a case-control study. DTI-based tractography was used in a case-control study to evaluate changes in the volume, diffusivity, and anisotropy of the long association tracts in symptomatic TBI patients with no visible signs of intracranial or intraparenchymal abnormalities on routine MRI. We further studied the reproducibility of different tools to identify and measure white-matter tracts by using a DTI sequence suitable for clinical protocols. Results: Both the number and extent of visible traumatic lesions on conventional MRI diminished significantly with time. Slightly increased diffusion in the normal-appearing brain was a common finding at one week after TBI, but it was not significantly associated with the injury severity. Fractional anisotropy values, that represent the integrity of the white-matter tracts, were significantly diminished in several tracts in TBI patients compared to the control subjects. Compared to the cross-sectional ROI method, the tract-based analyses had better reproducibility to identify and measure white-matter tracts of interest by means of DTI tractography. Conclusions: As conventional MRI is still applied in clinical practice, it should be carried out soon after the injury, at least in symptomatic patients with negative CT scan. DWI-related brain diffusivity measurements may be used to improve the documenting of TBI. DTI tractography can be used to improve radiologic diagnostics in a symptomatic TBI sub-population with no findings on conventional MRI. Reproducibility of different tools to quantify fibre tracts vary considerably, which should be taken into consideration in the clinical DTI applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Immunoreactive substance P was investigated in turtle lumbar spinal cord after sciatic nerve transection. In control animals immunoreactive fibers were densest in synaptic field Ia, where the longest axons invaded synaptic field III. Positive neuronal bodies were identified in the lateral column of the dorsal horn and substance P immunoreactive varicosities were observed in the ventral horn, in close relationship with presumed motoneurons. Other varicosities appeared in the lateral and anterior funiculi. After axotomy, substance P immunoreactive fibers were reduced slightly on the side of the lesion, which was located in long fibers that invaded synaptic field III and in the varicosities of the lateral and anterior funiculus. The changes were observed at 7 days after axonal injury and persisted at 15, 30, 60 and 90 days after the lesion. These findings show that turtles should be considered as a model to study the role of substance P in peripheral axonal injury, since the distribution and temporal changes of substance P were similar to those found in mammals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is increasingly recognised that chronically activated glia contribute to the pathology of various neurodegenerative diseases, including glaucoma. One means by which this can occur is through the release of neurotoxic, proinflammatory factors. In the current study, we therefore investigated the spatio-temporal patterns of expression of three such cytokines, IL-1β, TNFα and IL-6, in a validated rat model of experimental glaucoma. First, only weak evidence was found for increased expression of IL-1β and TNFα following induction of ocular hypertension. Second, and much more striking, was that robust evidence was uncovered showing IL-6 to be synthesised by injured retinal ganglion cells following elevation of intraocular pressure and transported in an orthograde fashion along the nerve, accumulating at sites of axonal disruption in the optic nerve head. Verification that IL-6 represents a novel marker of disrupted axonal transport in this model was obtained by performing double labelling immunofluorescence with recognised markers of fast axonal transport. The stimulus for IL-6 synthesis and axonal transport during experimental glaucoma arose from axonal injury rather than ocular hypertension, as the response was identical after optic nerve crush and bilateral occlusion of the carotid arteries, each of which is independent of elevated intraocular pressure. Moreover, the response of IL-6 was not a generalised feature of the gp130 family of cytokines, as it was not mimicked by another family member, ciliary neurotrophic factor. Finally, further study suggested that IL-6 may be an early part of the endogenous regenerative response as the cytokine colocalised with growth-associated membrane phosphoprotein-43 in some putative regenerating axons, and potently stimulated neuritogenesis in retinal ganglion cells in culture, an effect that was additive to that of ciliary neurotrophic factor. These data comprise clear evidence that IL-6 is actively involved in the attempt of injured retinal ganglion cells to regenerate their axons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have addressed the role of macrophages in glial response and T cell entry to the CNS after axonal injury, by using intravenous injection of clodronate-loaded mannosylated liposomes, in C57BL6 mice. As expected, clodronate-liposome treatment resulted in depletion of peripheral macrophages which was confirmed by F4/80- and MOMA-1(-) stainings in spleen. Sequential clodronate-liposome treatment 4, 2 and 0 days before axotomy resulted in significant reduction of infiltrating CD45(high) CD11b+ macrophages in the hippocampus at 1, 2 and 3 days post-lesion, measured by flow cytometry. There was a slight delay in the expansion of CD45(dim) CD11+ microglia in clodronate-liposome treated mice, but macrophage depletion had no effect on the percentage of infiltrating T cells in the lesion-reactive hippocampus. Lesion-induced TNFalpha mRNA expression was not affected by macrophage depletion, suggesting that activated glial cells are the primary source of this cytokine in the axonal injury-reactive brain. This identifies a potentially important distinction from inflammatory autoimmune infiltration in EAE, where macrophages are a prominent source of TNFalpha and their depletion prevents parenchymal T cell infiltration and disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spinal cord injury (SCI) is a devastating condition, which results from trauma to the cord, resulting in a primary injury response which leads to a secondary injury cascade, causing damage to both glial and neuronal cells. Following trauma, the central nervous system (CNS) fails to regenerate due to a plethora of both intrinsic and extrinsic factors. Unfortunately, these events lead to loss of both motor and sensory function and lifelong disability and care for sufferers of SCI. There have been tremendous advancements made in our understanding of the mechanisms behind axonal regeneration and remyelination of the damaged cord. These have provided many promising therapeutic targets. However, very few have made it to clinical application, which could potentially be due to inadequate understanding of compound mechanism of action and reliance on poor SCI models. This thesis describes the use of an established neural cell co-culture model of SCI as a medium throughput screen for compounds with potential therapeutic properties. A number of compounds were screened which resulted in a family of compounds, modified heparins, being taken forward for more intense investigation. Modified heparins (mHeps) are made up of the core heparin disaccharide unit with variable sulphation groups on the iduronic acid and glucosamine residues; 2-O-sulphate (C2), 6-O-sulphate (C6) and N-sulphate (N). 2-O-sulphated (mHep6) and N-sulphated (mHep7) heparin isomers were shown to promote both neurite outgrowth and myelination in the SCI model. It was found that both mHeps decreased oligodendrocyte precursor cell (OPC) proliferation and increased oligodendrocyte (OL) number adjacent to the lesion. However, there is a difference in the direct effects on the OL from each of the mHeps; mHep6 increased myelin internode length and mHep7 increased the overall cell size. It was further elucidated that these isoforms interact with and mediate both Wnt and FGF signalling. In OPC monoculture experiments FGF2 treated OPCs displayed increased proliferation but this effect was removed when co-treated with the mHeps. Therefore, suggesting that the mHeps interact with the ligand and inhibit FGF2 signalling. Additionally, it was shown that both mHeps could be partially mediating their effects through the Wnt pathway. mHep effects on both myelination and neurite outgrowth were removed when co-treated with a Wnt signalling inhibitor, suggesting cell signalling mediation by ligand immobilisation and signalling activation as a mechanistic action for the mHeps. However, the initial methods employed in this thesis were not sufficient to provide a more detailed study into the effects the mHeps have on neurite outgrowth. This led to the design and development of a novel microfluidic device (MFD), which provides a platform to study of axonal injury. This novel device is a three chamber device with two chambers converging onto a central open access chamber. This design allows axons from two points of origin to enter a chamber which can be subjected to injury, thus providing a platform in which targeted axonal injury and the regenerative capacity of a compound study can be performed. In conclusion, this thesis contributes to and advances the study of SCI in two ways; 1) identification and investigation of a novel set of compounds with potential therapeutic potential i.e. desulphated modified heparins. These compounds have multiple therapeutic properties and could revolutionise both the understanding of the basic pathological mechanisms underlying SCI but also be a powered therapeutic option. 2) Development of a novel microfluidic device to study in greater detail axonal biology, specifically, targeted axonal injury and treatment, providing a more representative model of SCI than standard in vitro models. Therefore, the MFD could lead to advancements and the identification of factors and compounds relating to axonal regeneration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The currently available clinical imaging methods do not provide highly detailed information about location and severity of axonal injury or the expected recovery time of patients with traumatic brain injury [1]. High-Definition Fiber Tractography (HDFT) is a novel imaging modality that allows visualizing and quantifying, directly, the degree of axons damage, predicting functional deficits due to traumatic axonal injury and loss of cortical projections. This imaging modality is based on diffusion technology [2]. The inexistence of a phantom able to mimic properly the human brain hinders the possibility of testing, calibrating and validating these medical imaging techniques. Most research done in this area fails in key points, such as the size limit reproduced of the brain fibers and the quick and easy reproducibility of phantoms [3]. For that reason, it is necessary to develop similar structures matching the micron scale of axon tubes. Flexible textiles can play an important role since they allow producing controlled packing densities and crossing structures that match closely the human crossing patterns of the brain. To build a brain phantom, several parameters must be taken into account in what concerns to the materials selection, like hydrophobicity, density and fiber diameter, since these factors influence directly the values of fractional anisotropy. Fiber cross-section shape is other important parameter. Earlier studies showed that synthetic fibrous materials are a good choice for building a brain phantom [4]. The present work is integrated in a broader project that aims to develop a brain phantom made by fibrous materials to validate and calibrate HDFT. Due to the similarity between thousands of hollow multifilaments in a fibrous arrangement, like a yarn, and the axons, low twist polypropylene multifilament yarns were selected for this development. In this sense, extruded hollow filaments were analysed in scanning electron microscope to characterize their main dimensions and shape. In order to approximate the dimensional scale to human axons, five types of polypropylene yarns with different linear density (denier) were used, aiming to understand the effect of linear density on the filament inner and outer areas. Moreover, in order to achieve the required dimensions, the polypropylene filaments cross-section was diminished in a drawing stage of a filament extrusion line. Subsequently, tensile tests were performed to characterize the mechanical behaviour of hollow filaments and to evaluate the differences between stretched and non-stretched filaments. In general, an increase of the linear density causes the increase in the size of the filament cross section. With the increase of structure orientation of filaments, induced by stretching, breaking tenacity increases and elongation at break decreases. The production of hollow fibers, with the required characteristics, is one of the key steps to create a brain phantom that properly mimics the human brain that may be used for the validation and calibration of HDFT, an imaging approach that is expected to contribute significantly to the areas of brain related research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les proteïnes associades a la mielina (MAIS), Nogo-A, MAG i OMgp, són molècules que presenten una capacitat inhibitòria molt important per el recreixement axonal i la neuroreparació després de lesió. No obstant des de fa anys les seves funcions han estat ampliades i s’han involucrat en diferents processos degeneratius del sistema nerviós o en processos neuroinflamatoris del sistema nerviós central i el perifèric com ara l'Escleresi Múltiple (MS). La base neurobiològica d’indicadors moleculars que són responsables del dany axonal en MS segueixen sense estar plenament descrits. Recentment s’ha publicat que el mecanisme de senyalització Nogo-A pot regir els primers canvis de la desmielinització immunomediada del sistema nerviós central en el model animal de MS, l’encefalomielitis autoimmune experimental (EAE). De la mateixa forma la proteïna priònica cel•lular és una proteïna que s’ha associat majoritàriament a malalties espongiformes, però que recentment s’ha vinculat (no sense controvèrsia) amb la seva possible relació amb la Malaltia d'Alzheimer (AD), ja que seria capaç de reclutar els oligòmers d’Aβ (ADDLs), els quals correlacionen millor amb el grau de demència, i amb els que interacciona directament, actuant així com un possible mediador de la fosforilació de tau en la malaltia. No obstant, les funcions de les MAIS i de la PrPc en aquests models de la malaltia no estan clarament definits i, per altra banda, es desconeixen els mecanismes de senyalització implicats, no descartant de forma clara el component neural i l’immune.