998 resultados para Different precursors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the synthesis of cubic, FDU-1 type, ordered mesoporous silica (OMS) was developed from two types of silicon source, tetraethyl orthosilicate (TEOS) and a less expensive compound, sodium silicate (Na(2)Si(3)O(7)), in the presence of a new triblock copolymer template Vorasurf 504 (EO(38)BO(46)EO(38)). For both silicon precursors the synthesis temperature was evaluated. For TEOS the effect of polymer dissolution in methanol and the acid solution (HCl and HBr) on the material structure was analyzed. For Na(2)Si(3)O(7) the influence of the polymer mass and the hydrothermal treatment time were the explored experimental parameters. The samples were examined by Small Angle X-ray Scattering (SAXS) and Nitrogen Sorption. For both precursors the decrease on the synthesis temperature from ambient, -25 degrees C, to -15 degrees C improved the ordered porous structure. For TEOS, the SAXS results showed that there is an optimum amount of hydrophobic methanol that contributed to dissolve the polymer but did not provoke structural disorder. The less electronegative Br-ions, when compared to Cl-, induced a more ordered porous structure, higher surface areas and larger lattice parameters. For Na(2)Si(3)O(7) the increase on the hydrothermal treatment time as well as the use of an optimized amount of polymer promoted a better ordered porous structure. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The porous Ti02 pellets were prepared based on pigment grade titaina, P25 titania powder and titaniurn(lV) butoxide. The characterization was done with X-Ray diffraction, scanning electron microscopy and BET measurements. The result shows that Ti02 pellets by using titaniurn(IV) butoxide with some addictive have the best surface porosity, with specific surface area of 196.9m2/g. For pigment grade titania and P25 titania powder, it is still effective to enhance the surface area after reassembling. The surface area increased from 11.6 to 29.2 m2/g for pigment grade titania and from 50 to 84.4 m2/g for P25 titania powder. Furthermore, it has been investigated on how to optimize and get the highest surface area by controlling the sintering temperature, reaction temperature, pH of solution, and the amount of alcohol and addictive of surfactant during preparation. The experimental photocatalytic degradation of acetone and toluene was performed using titania pellets made from P25 titania powder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report luminescent and morphological studies with yttrium oxide samples doped with ytterbium and erbium. The samples were prepared by the combustion method and also from different precursors: oxalate, basic carbonate and polymeric resin. All powders were identified Lis being an yttrium oxide with a C-form structure, independent of the employed precursor. From mean crystallite size measurements, it was verified that oxides prepared through the polymeric precursor and combustion methods lead to the smallest crystallite size. Particle shape and size were investigated by SEM and TEM, and showed that both the oxalate precursor and the combustion methods do not provide oxide materials of suitable shape or size, on the other hand. The basic carbonate and polymeric precursors resulted in spherically shaped particles with an average diameter of 90 and 15 run. respectively, Upon 980 run diode laser excitation, green and red emission lines were detected for all samples and were assigned to the H-2(11/2) S-4(3/2) -> I-4(15/2) and (4)Fg(9/2) -> 4I(15/12) transitions, respectively. Such transitions are characteristic for Er3+ and result from energy transfer from Yb3+ energy levels, F-2(7/2) -> F-2(5/2). A relationship between the decrease in the mean crystallite size and the enhancement in red emission was also established as well as the influence of the presence of a high percentage of Yb-3 Both factors promote ET from Yb3+ (F-2(5/2)) to Er3+ (I-4(11/2)). (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, mechanochemical synthesis was widely used in preparation of perovskite type of materials, such as BaTiO3, PbTiO3, PZT, etc. In this work, the possibility of mechanochemical synthesis of CaTiO3 from different precursors, such as CaCO3 or CaO and TiO2 was investigated. Intensive milling of mixture of CaO and TiO2, under optimal milling conditions, resulted in synthesis of single phase CaTiO3. It was also found that intensive milling of powder mixture containing CaCO3 and TiO2 only activate the powders for the sintering process; hence the CaTiO3 could be obtained at lower temperatures of sintering. To complete reaction of CaTiO3 formation during milling it is necessary to reduce CO2 partial pressure, i.e. it is necessary to change the atmosphere inside the vials during milling. In this work, an explanation for difference in milling behavior of different precursors was proposed and discussed. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In-situ EXAFS investigations have been carried out on Ni/gamma-Al2O3 catalysts with different metal loadings and prepared from different precursors. When the calcined precursors are reduced in hydrogen, the proportion of nickel metal formed varies with the nature of the precursor employed; NiAl2O4 is the unreduced product. The metal loading does not have any significant effect on the proportion of metal formed except in the case of the catalyst prepared by wet-impregnation, where appreciable metal is obtained only when the loading is greater than 10wt%. Ni/AlPO4 catalysts do not show the formation of NiAl2O4 and reduction to metal is complate, unlike with the Ni/gamma-Al2O3 catalysts which show only partial reduction to metal.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study describes the synthesis, characterization and photocatalytic potential of Ti oxide nanostructures of various morphologies and crystalline phases that were synthesized from 4 different precursors by the alkaline hydrothermal method. The materials were characterized by mainly X-ray diffraction (XRD), Raman spectroscopy, scanning and transmission electron microscopy (SEM and TEM), thermogravimetric analysis (TGA) and X-ray absorption spectroscopy (XAS). Also, photocatalytic potential was assessed by rhodamine B photodegradation. The materials obtained from peroxytitanium complexes (PTCs) exhibited a strong dependence on the concentration of KOH ([KOH]) used for synthesis. The pre-formed sheets of the PTCs were critical to the formation of nanostructures such as nanoribbons, and they were also compatible with the rolling up process, which can be utilized to form structures such as nanorods, nanowires or nanotubes. In the rhodamine photodegradation tests, TiO2 anatase nanostructures with six-coor inated Ti were more effective than the titanate ones (five-coordinated), despite having a smaller surface area and fewer OH groups. The lower photoactivity of the titanates was attributed to the presence of five-coordinated titanium species (TiO5), which may act as electron-hole recombination centers. Furthermore, the material with a mixture of TiO2/titanate was shown to be promising for photocatalytic applications. © 2013 by American Scientific Publishers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neutral and cationic \[C-2,P-2] were investigated by a combination of mass spectrometry and electronic structure calculations. The cationic \[C-2,P-2](.+) potential energy surface including all relevant minima, transition states and fragmentation products was calculated at the B3LYP/6-311G(3df) level of theory. The most stable structures are linear PCCP.+ 1(.+) (E-rel=0 kcal mol(-1)), a three-membered ring with exocyclic phosphorus c-(PCC)-P 2(.+) (E-rel = 40.8 kcal mol(-1)), and the rhombic isomer 3(.+) (E-rel = 24.9 kcal mol(-1)). All fragmentation channels are significantly higher in energy than any of the \[C-2,P-2](.+) isomers. Experimentally, \[C-2,P-2](.+) ions are generated under high vacuum conditions by electron ionization of two different precursors. The fragmentation of \[C-2,P-2](.+) on collisional activation is preceded by rearrangement reactions which obscure the structural connectivity of the ions. The existence and the high stability of neutral \[C-2,P-2] were proved by a neutralization-reionization (NR) experiment. Although an unambiguous structural assignment of the neutral species cannot be drawn, both theory and experiment suggest that the long-sought neutral, linear PCCP 1 is generated using the NR technique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present work, we report the deposition of zirconia thin films on Si(100) at various substrate temperatures by low-pressure metalorganic chemical vapor deposition (MOCVD). Three different zirconium complexes, viz., tetrakis(2,4-pentadionato)zirconium(IV), [Zr(pd)4], tetrakis(2,2,6,6-tetramethyl-3,5-heptadionato)zirconium(IV), [Zr(thd)4], and tetrakis(t-butyl-3-oxo-butanoato)zirconium(IV), [Zr(tbob)4] are used as precursors. The relationship between the molecular structures of the precursors and their thermal properties, as examined by TG/DTA is presented. The films deposited using these precursors have distinctly different morphology, though all of them are of the cubic phase. The films grown from Zr(thd)4 are well crystallized, showing faceted growth at 575°C, whereas the films grown from Zr(pd)4 and Zr(tbob)4 are not well crystallized, and display cracks. These differences in the observed microstructure may be attributed to the different chemical decomposition pathways of the precursors during the film growth, which influence the nucleation and the growth processes. This is also evidenced by the different kinetics of growth from these three precursors under otherwise identical CVD conditions. The details of thin film deposition, and film microstructure analysis by XRD and SEM is presented. The dielectric behavior of the films deposited from different precursors, as studied by C-V measurements, are compared.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A controllable synthesis of phase pure wurtzite (WZ) ZnS nanostructures has been reported in this work at a low temperature of similar to 220 degrees C using ethylenediamine as the soft template and by varying the molar concentration of zinc to sulphur precursors as well as by using different precursors. A significant reduction in the formation temperature required for the synthesis of phase pure WZ ZnS has been observed. A strong correlation has been observed between the morphology of the synthesized ZnS nanostructures and the precursors used during synthesis. It has been found from Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) image analyses that the morphology of the ZnS nanocrystals changes from a block-like to a belt-like structure having an average length of similar to 450 nm when the molar ratio of zinc to sulphur source is increased from 1 : 1 to 1 : 3. An oriented attachment (OA) growth mechanism has been used to explain the observed shape evolution of the synthesized nanostructures. The synthesized nanostructures have been characterized by the X-ray diffraction technique as well as by UV-Vis absorption and photoluminescence (PL) emission spectroscopy. The as-synthesized nanobelts exhibit defect related visible PL emission. On isochronal annealing of the nanobelts in air in the temperature range of 100-600 degrees C, it has been found that white light emission with a Commission Internationale de I'Eclairage 1931 (CIE) chromaticity coordinate of (0.30, 0.34), close to that of white light (0.33, 0.33), can be obtained from the ZnO nanostructures obtained at an annealing temperature of 600 degrees C. UV light driven degradation of methylene blue (MB) dye aqueous solution has also been demonstrated using as-synthesized nanobelts and similar to 98% dye degradation has been observed within only 40 min of light irradiation. The synthesized nanobelts with visible light emission and having dye degradation activity can be used effectively in future optoelectronic devices and in water purification for cleaning of dyes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Casa da Moeda do Brasil (CMB) é uma empresa nacional, com mais de 300 anos de experiência na produção de valores e impressos de segurança. A produção de cédulas, realizada pelo Departamento de Cédulas (DECED), consiste de três etapas de impressão, off-set, calografia e tipografia, seguida de acabamento e embalagem semi-automatizado. A impressão calcográfica consome solução de limpeza, composta de soda cáustica e óleo sulfonado, para limpeza do cilindro de impressão, gerando um efluente líquido saturado de tinta. Este efluente apresenta baixa biodegradabilidade, apresentando uma relação DBO / DQO de aproximadamente 1:4. Em termos de tratabilidade, as estações de tratamento de efluentes (ETE) apresentam uma configuração convencional, por via biológica, demonstram pouca eficiência na degradação da matéria orgânica deste efluente. Com compostos recalcitrantes, torna-se necessária a inclusão de uma etapa terciária que permita sua degradação por via química, permitindo o descarte do efluente com características menos danosas ao ambiente. Neste trabalho, aplicou-se a reação de Fenton no efluente do DECED por sua capacidade de converter a matéria orgânica em gás carbônico e água ou, caso seja utilizado em pré-tratamentos, torna-os biodegradáveis. Foram estudadas diferentes condições para medir a influência de diferentes parâmetros na eficiência da reação. A reação de Fenton consiste na geração de radicais hidroxil (HO), por diferentes rotas, em quantidades suficientes para a degradação de matéria orgânica. Esses radicais são gerados a partir de peróxido de hidrogênio (H2O2) em reações com diferentes precursores como ozônio (O3), luz UV (ultravioleta), ultra-som e sais de ferro. No presente trabalho restringiu-se às reações com sais de ferro. Dentre os resultados obtidos, verificou-se o tempo mínimo para reação em 10 minutos. A relação entre íons ferro e peróxido de hidrogênio é menor do que a literatura normalmente sugere, 1:2, contra 1:3. Como a solução de sulfato ferroso é muito instável, passando os íons ferrosos a férricos, utilizou-se a adição direta do sal. Em escala industrial, a solução de sulfato ferroso deve ser preparada em poucas quantidades para que tenha baixo tempo de estocagem, a fim de não ser degradada. A temperatura, na faixa estudada (de 20C à 45C), é um parâmetro que tem pouca influência, pois a redução da eficiência da reação foi pequena (de 99,0% para 94,9%). O ferro utilizado na reação não se demonstrou uma nova fonte de transtornos para o ambiente. Nas condições utilizadas, a concentração de ferro residual esteve próxima ao limite permitido pela legislação no efluente tratado, necessitando apenas de alguns ajustes para a correção do problema

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A simple and efficient method has been established for the selective synthesis of mesoporous and nanorod CeVO4 with different precursors by sonochemical method. CeVO4 nanorod can be simply synthesized by ultrasound irradiation of Ce(NO3)(3) and NH4VO3 in aqueous solution without any surfactant or template. While mesoporous CeVO4 with high specific surface area can be prepared with Ce(NO3)(3), V2O5 and NaOH in the same way. Mesoporous CeVO4 has a specific surface area of 122 m(2) g(-1) and an average pore size of 5.2 nm; CeVO4 nanorods have a diameter of about 5 nm, and a length of 100-150 nm. The ultrasound irradiation and ammonia in the reactive solution are two key factors in the formation of such rod-like products. X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and differential thermal analyses (DTA), UV/vis absorption spectroscopy and Brunauer-Emmett-Teller (BET) were applied for characterization of the as-prepared products.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One-dimensional semiconductor nanowires are considered to be promising materials for future nanoelectronic applications. However, before these nanowires can be integrated into such applications, a thorough understanding of their growth behaviour is necessary. In particular, methods that allow the control over nanowire growth are deemed especially important as it is these methods that will enable the control of nanowire dimensions such as length and diameter (high aspect ratios). The production of nanowires with high-aspect ratios is vital in order to take advantage of the unique properties experienced at the nanoscale, thus allowing us to maximise their use in devices. Additionally, the development of low-resistivity interconnects is desirable in order to connect such nanowires in multi-nanowire components. Consequently, this thesis aims to discuss the synthesis and characterisation of germanium (Ge) nanowires and platinum (Pt) interconnects. Particular emphasis is placed on manipulating the nanowire growth kinetics to produce high aspect ratio structures. The discussion of Pt interconnects focuses on the development of low-resistivity devices and the electrical and structural analysis of those devices. Chapter 1 reviews the most critical aspects of Ge nanowire growth which must be understood before they can be integrated into future nanodevices. These features include the synthetic methods employed to grow Ge nanowires, the kinetic and thermodynamic aspects of their growth and nanowire morphology control. Chapter 2 outlines the experimental methods used to synthesise and characterise Ge nanowires as well as the methods used to fabricate and analyse Pt interconnects. Chapter 3 discusses the control of Ge nanowire growth kinetics via the manipulation of the supersaturation of Ge in the Au/Ge binary alloy system. This is accomplished through the use of bi-layer films, which pre-form Au/Ge alloy catalysts before the introduction of the Ge precursor. The growth from these catalysts is then compared with Ge nanowire growth from standard elemental Au seeds. Nanowires grown from pre-formed Au/Ge alloy seeds demonstrate longer lengths and higher growth rates than those grown from standard Au seeds. In-situ TEM heating on the Au/Ge bi-layer films is used to support the growth characteristics observed. Chapter 4 extends the work of chapter 3 by utilising Au/Ag/Ge tri-layer films to enhance the growth rates and lengths of Ge nanowires. These nanowires are grown from Au/Ag/Ge ternary alloy catalysts. Once again, the supersaturation is influenced, only this time it is through the simultaneous manipulation of both the solute concentration and equilibrium concentration of Ge in the Au/Ag/Ge ternary alloy system. The introduction of Ag to the Au/Ge binary alloy lowers the equilibrium concentration, thus increasing the nanowire growth rate and length. Nanowires with uniform diameters were obtained via synthesis from AuxAg1-x alloy nanoparticles. Manifestation of the Gibbs-Thomson effect, resulting from the dependence of the mean nanowire length as a function of diameter, was observed for all of the nanowires grown from the AuxAg1-x nanoparticles. Finally, in-situ TEM heating was used to support the nanowire growth characteristics. Chapter 5 details the fabrication and characterisation of Pt interconnects deposited by electron beam induced deposition of two different precursors. The fabrication is conducted inside a dual beam FIB. The electrical and structural characteristics of interconnects deposited from a standard organometallic precursor and a novel carbon-free precursor are compared. The electrical performance of the carbon-free interconnects is shown to be superior to that of the organometallic devices and this is correlated to the structural composition of both interconnects via in-situ TEM heating and HAADF-STEM analysis. Annealing of the interconnects is carried out under two different atmospheres in order to reduce the electrical resistivity even further. Finally, chapter 6 presents some important conclusions and summarises each of the previous chapters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The continued advancement of metal oxide semiconductor field effect transistor (MOSFET) technology has shifted the focus from Si/SiO2 transistors towards high-κ/III-V transistors for high performance, faster devices. This has been necessary due to the limitations associated with the scaling of the SiO2 thickness below ~1 nm and the associated increased leakage current due to direct electron tunnelling through the gate oxide. The use of these materials exhibiting lower effective charge carrier mass in conjunction with the use of a high-κ gate oxide allows for the continuation of device scaling and increases in the associated MOSFET device performance. The high-κ/III-V interface is a critical challenge to the integration of high-κ dielectrics on III-V channels. The interfacial chemistry of the high-κ/III-V system is more complex than Si, due to the nature of the multitude of potential native oxide chemistries at the surface with the resultant interfacial layer showing poor electrical insulating properties when high-κ dielectrics are deposited directly on these oxides. It is necessary to ensure that a good quality interface is formed in order to reduce leakage and interface state defect density to maximise channel mobility and reduce variability and power dissipation. In this work, the ALD growth of aluminium oxide (Al2O3) and hafnium oxide (HfO2) after various surface pre-treatments was carried out, with the aim of improving the high-κ/III-V interface by reducing the Dit – the density of interface defects caused by imperfections such as dangling bonds, dimers and other unsatisfied bonds at the interfaces of materials. A brief investigation was performed into the structural and electrical properties of Al2O3 films deposited on In0.53Ga0.47As at 200 and 300oC via a novel amidinate precursor. Samples were determined to experience a severe nucleation delay when deposited directly on native oxides, leading to diminished functionality as a gate insulator due to largely reduced growth per cycle. Aluminium oxide MOS capacitors were prepared by ALD and the electrical characteristics of GaAs, In0.53Ga0.47As and InP capacitors which had been exposed to pre-pulse treatments from triethyl gallium and trimethyl indium were examined, to determine if self-cleaning reactions similar to those of trimethyl aluminium occur for other alkyl precursors. An improved C-V characteristic was observed for GaAs devices indicating an improved interface possibly indicating an improvement of the surface upon pre-pulsing with TEG, conversely degraded electrical characteristics observed for In0.53Ga0.47As and InP MOS devices after pre-treatment with triethyl gallium and trimethyl indium respectively. The electrical characteristics of Al2O3/In0.53Ga0.47As MOS capacitors after in-situ H2/Ar plasma treatment or in-situ ammonium sulphide passivation were investigated and estimates of interface Dit calculated. The use of plasma reduced the amount of interface defects as evidenced in the improved C-V characteristics. Samples treated with ammonium sulphide in the ALD chamber were found to display no significant improvement of the high-κ/III-V interface. HfO2 MOS capacitors were fabricated using two different precursors comparing the industry standard hafnium chloride process with deposition from amide precursors incorporating a ~1nm interface control layer of aluminium oxide and the structural and electrical properties investigated. Capacitors furnished from the chloride process exhibited lower hysteresis and improved C-V characteristics as compared to that of hafnium dioxide grown from an amide precursor, an indication that no etching of the film takes place using the chloride precursor in conjunction with a 1nm interlayer. Optimisation of the amide process was carried out and scaled samples electrically characterised in order to determine if reduced bilayer structures display improved electrical characteristics. Samples were determined to exhibit good electrical characteristics with a low midgap Dit indicative of an unpinned Fermi level