937 resultados para Diesel fuel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe production of methyl and ethyl esters derived from baru oil (Dipteryx alata Vog.). Water and alcohols are removed from the biodiesel obtained by simple distillation. We study the acidity, density, iodine number, viscosity, water content, peroxide number, external appearance, and saponification number of the oil, its methyl and ethyl esters (biodiesels) and their blends (B5, B10, B15, B20, and B30) with commercial diesel fuel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On February 18, 2011, Caterpillar Tractor Company, Inc. (CAT) was notified by the Woodford County Emergency Management Agency that residents along Ten Mile Creek had noticed a fuel odor. CAT personnel checked outfalls on the bluff below and the Proving Grounds fuel station and discovered some diesel fuel seeping into a ravine which continues to Ten Mile Creek. An initial investigation around the fueling facility revealed a diesel leak in an underground line that feeds the fuel dispensers. Diesel fuel is used on the Proving Grounds property to power the earth-moving equipment being tested there. At the time the leak was found, CAT began excavating to remove the source and to find the extend of the leak. The fuel had followed a down-hill slope to a ravine on CAT property, ran down the ravine and impacted Ten-Mile Creek (about one-half mile away) with a visible sheen of diesel fuel on top of the water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A tanulmány azt a kérdést vizsgálja, hogy versenyeznek-e az európai kormányok gázolajra vonatkozó jövedékiadó-kulcsaikkal a nagyobb adóbevételekért, és ha igen, befolyásolja-e az országok mérete kormányaik adóztatási stratégiáját. Az üzemanyagturizmussal szembesülő kormányok adókivetési magatartását egy kétországos adóverseny modellel jelezzük előre, amelyben a standard modellektől eltérően a fogyasztók kereslete árrugalmas. Megmutatjuk, hogy ha a kereslet nem teljesen rugalmatlan, mint Nielsen [2001], illetve Kanbur-Keen [1993] modelljeiben, akkor a nagy ország kormányának egyensúlyi viselkedése nemcsak abban különbözik a kicsiétől, hogy nagyobb adót állapít meg, hanem abban is, hogy válaszfüggvénye meredekebb. Az aszimmetrikus adóverseny általunk használt modelljét a dízelüzemanyagoknak 16 európai ország 1978 és 2005 közötti jövedékiadó-adatain vizsgáljuk. Az 1995 és 2005 közötti időszakra vonatkozó becslési eredményeink megerősítik, hogy az európai országok szomszédaik adókulcs-változtatásának hatására változtattak saját adókulcsaikon, és hogy a területileg/gazdaságilag kisebb országok kisebb intenzitással reagáltak szomszédaik adóváltoztatásra, mint a nagyobbak. Tanulmányunk ezzel magyarázatot nyújt arra is, hogy miért erősödött fel a tagállamok jövedéki adókulcsainak méret szerinti differenciálódása az elmúlt bő tíz évben, valamint hogy miért nem sikerült az Európai Uniónak a minimumadószintre vonatkozó előírásával előbbre lépnie az egységes adóztatás megvalósításában. / === / The paper assesses spatial competition in diesel taxation among European governments. By adding an extension to the standard model, it is shown that asymmetric competition – small countries undercutting large – implies that small countries respond less strongly to tax changes by their neighbours than large countries do. An estimate is then made of the fiscal reaction functions for national governments, employing a first-difference regression model with a weighting scheme constructed from road-traffic density data at national borders. Data from 16 countries (EU-15 minus Greece plus Norway and Switzerland) between 1978 and 2005 provides evidence that European governments set their diesel tax interdependently, and moreover, that small European countries tend to react less strongly to changes in their competitors' tax rate than large countries do.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diesel trucks and buses account for approximately 50 percent of the particulate matter (PM) and oxides of nitrogen (NOx) air pollution from on-road vehicles in Illinois. PM and NOx may contribute to a variety of health effects, including nausea, headaches, increased risk of asthma attacks, lung cancer, and premature death. Children and people with lung and heart conditions, are generally the most sensitive to diesel exhaust. Millions of tons of air pollution are emitted every year in the U.S. by trucks and buses that idle while parked.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents the lifecycle assessment (LCA) of fuel ethanol, as 100% of the vehicle fuel, from sugarcane in Brazil. The functional unit is 10,000 km run in an urban area by a car with a 1,600-cm(3) engine running on fuel hydrated ethanol, and the resulting reference flow is 1,000 kg of ethanol. The product system includes agricultural and industrial activities, distribution, cogeneration of electricity and steam, ethanol use during car driving, and industrial by-products recycling to irrigate sugarcane fields. The use of sugarcane by the ethanol agribusiness is one of the foremost financial resources for the economy of the Brazilian rural area, which occupies extensive areas and provides far-reaching potentials for renewable fuel production. But, there are environmental impacts during the fuel ethanol lifecycle, which this paper intents to analyze, including addressing the main activities responsible for such impacts and indicating some suggestions to minimize the impacts. This study is classified as an applied quantitative research, and the technical procedure to achieve the exploratory goal is based on bibliographic revision, documental research, primary data collection, and study cases at sugarcane farms and fuel ethanol industries in the northeast of SA o pound Paulo State, Brazil. The methodological structure for this LCA study is in agreement with the International Standardization Organization, and the method used is the Environmental Design of Industrial Products. The lifecycle impact assessment (LCIA) covers the following emission-related impact categories: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. The results of the fuel ethanol LCI demonstrate that even though alcohol is considered a renewable fuel because it comes from biomass (sugarcane), it uses a high quantity and diversity of nonrenewable resources over its lifecycle. The input of renewable resources is also high mainly because of the water consumption in the industrial phases, due to the sugarcane washing process. During the lifecycle of alcohol, there is a surplus of electric energy due to the cogeneration activity. Another focus point is the quantity of emissions to the atmosphere and the diversity of the substances emitted. Harvesting is the unit process that contributes most to global warming. For photochemical ozone formation, harvesting is also the activity with the strongest contributions due to the burning in harvesting and the emissions from using diesel fuel. The acidification impact potential is mostly due to the NOx emitted by the combustion of ethanol during use, on account of the sulfuric acid use in the industrial process and because of the NOx emitted by the burning in harvesting. The main consequence of the intensive use of fertilizers to the field is the high nutrient enrichment impact potential associated with this activity. The main contributions to the ecotoxicity impact potential come from chemical applications during crop growth. The activity that presents the highest impact potential for human toxicity (HT) via air and via soil is harvesting. Via water, HT potential is high in harvesting due to lubricant use on the machines. The normalization results indicate that nutrient enrichment, acidification, and human toxicity via air and via water are the most significant impact potentials for the lifecycle of fuel ethanol. The fuel ethanol lifecycle contributes negatively to all the impact potentials analyzed: global warming, ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. Concerning energy consumption, it consumes less energy than its own production largely because of the electricity cogeneration system, but this process is highly dependent on water. The main causes for the biggest impact potential indicated by the normalization is the nutrient application, the burning in harvesting and the use of diesel fuel. The recommendations for the ethanol lifecycle are: harvesting the sugarcane without burning; more environmentally benign agricultural practices; renewable fuel rather than diesel; not washing sugarcane and implementing water recycling systems during the industrial processing; and improving the system of gases emissions control during the use of ethanol in cars, mainly for NOx. Other studies on the fuel ethanol from sugarcane may analyze in more details the social aspects, the biodiversity, and the land use impact.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The techniques available for the remediation of environmental accidents involving petroleum hydrocarbons are generally high-cost solutions. A cheaper, practical and ecologically relevant alternative is the association of plants with microorganisms that contribute to the degradation and removal of hydrocarbons from the soil. The growth of three tropical grass species (Brachiaria brizantha, Brachiaria decumbens and Paspalum notatum) and the survival of root-associated bacterial communities was evaluated at different diesel oil concentrations. Seeds of three grass species were germinated in greenhouse and at different doses of diesel (0, 2.5, 5 and 10 g kg-1 soil). Plants were grown for 10 weeks with periodic assessment of germination, growth (fresh and dry weight), height, and number of bacteria in the soil (pots with or without plants). Growth and biomass of B. decumbens and P. notatum declined significantly when planted in diesel-oil contaminated soils. The presence of diesel fuel did not affect the growth of B. brizantha, which was highly tolerant to this pollutant. Bacterial growth was significant (p < 0.05) and the increase was directly proportional to the diesel dose. Bacteria growth in diesel-contaminated soils was stimulated up to 5-fold by the presence of grasses, demonstrating the positive interactions between rhizosphere and hydrocarbon-degrading bacteria in the remediation of diesel-contaminated soils.