965 resultados para Diesel emission reduction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2) is the main objective whiles the correlation between PM, O3 and CO2 is considered. A dielectric barrier discharge reactor has been designed with pulsed power technology to produce plasma inside the diesel exhaust. To characterise the system under varied conditions, a range of applied voltages from 11 kVPP to 21kVPP at repetition rates of 2.5, 5, 7.5 and 10 kHz, have been experimentally investigated. The results show that by increasing the applied voltage and repetition rate, higher discharge power and CO2 dissociation can be achieved. The PM removal efficiency of more than 50% has been achieved during the experiments and high concentrations of ozone on the order of a few hundreds of ppm have been observed at high discharge powers. Furthermore, O3, CO2 and PM concentrations at different plasma states have been analysed for time dependence. Based on this analysis, an inverse relationship between ozone concentration and PM removal has been found and the role of ozone in PM removal in plasma treatment of diesel exhaust has been highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed three-dimensional CFD simulations involving flow and combustion chemistry are used to study the effect of swirl induced by re-entrant piston bowl geometries on pollutant emissions from a single-cylinder diesel engine. The baseline engine configuration consists of a hemispherical piston bowl and an injector with finite sac volume. The first iteration involved using a torroidal, slightly re-entrant bowl geometry, and a sac-less injector. Pollutant emission measurements indicated a reduction in emissions with this modification. Simulations on both configurations were then conducted to understand the effect of the changes. The simulation results indicate that the selected piston bowl geometry could actually be reducing the in-cylinder swirl and turbulence and the emission reduction may be entirely due to the introduction of the sac-less injector. In-cylinder air motion was then studied in a number of combustion chamber geometries, and a geometry which produced the highest in-cylinder swirl and Turbulence Kinetic Energy (TKE) around the compression top dead centre (TDC) was identified. The optimal nature of this re-entrant piston bowl geometry is confirmed by detailed combustion simulations and emission predictions. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non-thermal plasma (NTP) is a promising candidate for controlling engine exhaust emissions. Plasma is known as the fourth state of matter, where both electrons and positive ions co-exist. Both gaseous and particle emissions of diesel exhaust undergo chemical changes when they are exposed to plasma. In this project diesel particulate matter (DPM) mitigation from the actual diesel exhaust by using NTP technology has been studied. The effect of plasma, not only on PM mass but also on PM size distribution, physico-chemical structure of PM and PM removal mechanisms, has been investigated. It was found that NTP technology can significantly reduce both PM mass and number. However, under some circumstances particles can be formed by nucleation. Energy required to create the plasma with the current technology is higher than the benchmark set by the commonly used by the automotive industry. Further research will enable the mechanism of particle creation and energy consumption to be optimised.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is a potent agricultural greenhouse gas (GHG). More than 50% of the global anthropogenic N2O flux is attributable to emissions from soil, primarily due to large fertilizer nitrogen (N) applications to corn and other non-leguminous crops. Quantification of the trade–offs between N2O emissions, fertilizer N rate, and crop yield is an essential requirement for informing management strategies aiming to reduce the agricultural sector GHG burden, without compromising productivity and producer livelihood. There is currently great interest in developing and implementing agricultural GHG reduction offset projects for inclusion within carbon offset markets. Nitrous oxide, with a global warming potential (GWP) of 298, is a major target for these endeavours due to the high payback associated with its emission prevention. In this paper we use robust quantitative relationships between fertilizer N rate and N2O emissions, along with a recently developed approach for determining economically profitable N rates for optimized crop yield, to propose a simple, transparent, and robust N2O emission reduction protocol (NERP) for generating agricultural GHG emission reduction credits. This NERP has the advantage of providing an economic and environmental incentive for producers and other stakeholders, necessary requirements in the implementation of agricultural offset projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is worldwide interest in reducing aircraft emissions. The difficulty of reducing emissions including water vapour, carbon dioxide (CO2) and oxides of nitrogen (NOx) is mainly due from the fact that a commercial aircraft is usually designed for a particular optimal cruise altitude but may be requested or required to operate and deviate at different altitude and speeds to archive a desired or commanded flight plan, resulting in increased emissions. This is a multi- disciplinary problem with multiple trade-offs such as optimising engine efficiency, minimising fuel burnt, minimise emissions while maintaining aircraft separation and air safety. This project presents the coupling of an advanced optimisation technique with mathematical models and algorithms for aircraft emission reduction through flight optimisation. Numerical results show that the method is able to capture a set of useful trade-offs between aircraft range and NOx, and mission fuel consumption and NOx. In addition, alternative cruise operating conditions including Mach and altitude that produce minimum NOx and CO2 (minimum mission fuel weight) are suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary motivation for the vehicle replacement schemes that were implemented in many countries was to encourage the purchase of new cars. The basic assumption of these schemes was that these acquisitions would benefit both the economy and the environment as older and less fuel-efficient cars were scrapped and replaced with more fuel-efficient models. In this article, we present a new environmental impact assessment method for assessing the effectiveness of scrappage schemes for reducing CO2 emissions taking into account the rebound effect, driving behavior for older versus new cars and entire lifecycle emissions for during the manufacturing processes of new cars. The assessment of the Japanese scrappage scheme shows that CO2 emissions would only decrease if users of the scheme retained their new gasoline passenger vehicles for at least 4.7 years. When vehicle replacements were restricted to hybrid cars, the reduction in CO2 achieved by the scheme would be 6-8.5 times higher than the emissions resulting from a scheme involving standard, gasoline passenger vehicles. Cost-benefit analysis, based on the emission reduction potential, showed that the scheme was very costly. Sensitivity analysis showed that the Japanese government failed to determine the optimum, or target, car age for scrapping old cars in the scheme. Specifically, scrapping cars aged 13 years and over did not maximize the environmental benefits of the scheme. Consequently, modifying this policy to include a reduction in new car subsidies, focused funding for fuel-efficient cars, and modifying the target car age, would increase environmental benefits. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessment of the potential CO2 emission reduction by development of non-grain-based ethanol in China is valuable for both setting up countermeasures against climate change and formulating bioethanol policies. Based on the land occupation property, feedstock classification and selection are conducted, identifying sweet sorghum, cassava, and sweet potato as plantation feedstocks cultivated from low-quality arable marginal land resources and molasses and agricultural straws as nonplantation feedstocks derived from agricultural by-products. The feedstock utilization degree, CO2 reduction coefficient of bioethanol, and assessment model of CO2 emission reduction potential of bioethanol are proposed and established to assess the potential CO2 emission reduction by development of non-grain-based bioethanol. The results show that China can obtain emission reduction potentials of 10.947 and 49.027 Mt CO2 with non-grain-based bioethanol in 2015 and 2030, which are much higher than the present capacity, calculated as 1.95 Mt. It is found that nonplantation feedstock can produce more bioethanol so as to obtain a higher potential than plantation feedstock in both 2015 and 2030. Another finding is that developing non-grain-based bioethanol can make only a limited contribution to China's greenhouse gas emission reduction. Moreover, this study reveals that the regions with low and very low potentials for emission reduction will dominate the spatial distribution in 2015, and regions with high and very high potentials will be the majority in 2030.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the early stages of the development of Japan’s environmental policy, sulfur oxide (SOx) emissions, which seriously damage health, was the most important air pollution problem. In the second half of the 1960s and the first half of the 1970s, the measures against SOx emissions progressed quickly, and these emissions were reduced drastically. The most important factor of the reduction was the conversion to a low-sulfur fuel for large-scale fuel users, such as the electric power industry. However, industries started conversion to low-sulfur fuel not due to environmental concerns, but simply to reduce costs. Furthermore, the interaction among the various interests of the electric power industry, oil refineries, the central government, local governments, and citizens over the energy and environmental policies led to the measures against SOx emissions by fuel conversion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chinese government commits to reach its peak carbon emissions before 2030, which requires China to implement new policies. Using a CGE model, this study conducts simulation studies on the functions of an energy tax and a carbon tax and analyzes their effects on macro-economic indices. The Chinese economy is affected at an acceptable level by the two taxes. GDP will lose less than 0.8% with a carbon tax of 100, 50, or 10 RMB/ton CO2 or 5% of the delivery price of an energy tax. Thus, the loss of real disposable personal income is smaller. Compared with implementing a single tax, a combined carbon and energy tax induces more emission reductions with relatively smaller economic costs. With these taxes, the domestic competitiveness of energy intensive industries is improved. Additionally, we found that the sooner such taxes are launched, the smaller the economic costs and the more significant the achieved emission reductions.