990 resultados para Diesel Particulate Matter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particulate matter (PM) emissions involve a complex mixture of solid and liquid particles suspended in a gas, where it is noted that PM emissions from diesel engines are a major contributor to the ambient air pollution problem. Whilst epidemiological studies have shown a link between increased ambient PM emissions and respiratory morbidity and mortality, studies of this design are not able to identify the PM constituents responsible for driving adverse respiratory health effects. This review explores in detail the physico-chemical properties of diesel particulate matter (DPM), and identifies the constituents of this pollution source that are responsible for the development of respiratory disease. In particular, this review shows that the DPM surface area and adsorbed organic compounds play a significant role in manifesting chemical and cellular processes that if sustained can lead to the development of adverse respiratory health effects. The mechanisms of injury involved included: inflammation, innate and acquired immunity, and oxidative stress. Understanding the mechanisms of lung injury from DPM will enhance efforts to protect at-risk individuals from the harmful respiratory effects of air pollutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis improves our insight towards the effects of using biodiesels on the particulate matter emission of diesel engines and contributes to our understanding of their potential adverse health effects. The novelty of this project is the use of biodiesel fuel with controlled chemical composition that enables us to relate changes of physiochemical properties of particles to specific properties of the biodiesel. For the first time, the possibility of a correlation of the volatility and the Reactive Oxygen Species concentration of the particles is investigated versus the saturation, oxygen content and carbon chain length of the fuel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Research has shown that elevations of only 10 mmHg diastolic blood pressure (BP) and 5 mmHg systolic BP are associated with substantial (as large as 50%) increases in risks for cardiovascular disease, a leading cause of death, worldwide. Epidemiological studies have found that particulate matter (PM) increases blood pressure (BP) and many biological mechanisms which may suggest that the organic matter of PM contributes to the increase in BP. To understand components of PM which may contribute to the increase in BP, this study focuses on diesel particulate matter (DPM) and polycyclic aromatic hydrocarbons (PAHs). To our knowledge, there have been only four epidemiological studies on BP and DPM, and no epidemiological studies on BP and PAHs. ^ Objective. Our objective was to evaluate the association between prevalent hypertension and two ambient exposures: DPM and PAHs amongst the Mano a Mano cohort. ^ Methods. The Mano a Mano cohort which was established by the M.D. Anderson Cancer Center in 2001, is comprised of individuals of Mexican origin residing in Houston, TX. Using geographical information systems, we linked modeled annual estimates of PAHs and DPM at the census track level from the U.S. Environmental Protection Agency's National-Scale Air Toxics Assessment to residential addresses of cohort members. Mixed-effects logistic regression models were applied to determine associations between DPM and PAHs and hypertension while adjusting for confounders. ^ Results. Ambient levels of DPM, categorized into quartiles, were not statistically associated with hypertension and did not indicate a dose response relationship. Ambient levels of PAHs, categorized into quartiles, were not associated with hypertension, but did indicate a dose response relationship in multiple models (for example: Q2: OR = 0.98; 95% CI, 0.73–1.31, Q3: OR = 1.08; 95% CI, 0.82–1.41, Q4: OR = 1.26; 95% CI, 0.94–1.70). ^ Conclusion. This is the first assessment to analyze the relationship between ambient levels of PAHs and hypertension and it is amongst a few studies investigating the association between ambient levels of DPM and hypertension. Future analyses are warranted to explore the effects DPM and PAHs using different categorizations in order to clarify their relationships with hypertension.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2) is the main objective whiles the correlation between PM, O3 and CO2 is considered. A dielectric barrier discharge reactor has been designed with pulsed power technology to produce plasma inside the diesel exhaust. To characterise the system under varied conditions, a range of applied voltages from 11 kVPP to 21kVPP at repetition rates of 2.5, 5, 7.5 and 10 kHz, have been experimentally investigated. The results show that by increasing the applied voltage and repetition rate, higher discharge power and CO2 dissociation can be achieved. The PM removal efficiency of more than 50% has been achieved during the experiments and high concentrations of ozone on the order of a few hundreds of ppm have been observed at high discharge powers. Furthermore, O3, CO2 and PM concentrations at different plasma states have been analysed for time dependence. Based on this analysis, an inverse relationship between ozone concentration and PM removal has been found and the role of ozone in PM removal in plasma treatment of diesel exhaust has been highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cellular effects of biodiesel emissions particulate matter (BDEP) and petroleum diesel emissions particulate matter (PDEP) were compared using a human airway cell line, A549. At concentrations of 25 µg/ml, diesel particulate matter induced the formation of multinucleate cells. In cells treated with a mixture of 80% PDEP:20% BDEP, 52% of cells were multinucleate cells compared with only 16% of cells treated with 20% PDEP:80% BDEP with a background multinucleate rate of 7%. These results demonstrate a causal relation between the formation of multinucleate cells and exposure to exhaust particulate matter, in particular diesel exhaust. Exposure of A549 cells to PDEP induced apoptosis, seen by active caspase-3 expression and the presence of cleaved pancytokeratin. PDEP exhaust was a much stronger inducer of cellular death through apoptosis than BDEP. There was an eightfold increase in the expression of SLC30A3 (zinc transporter-3 or ZnT3) in cells exposed to 80% PDEP:20% BDEP compared to untreated cells. The increase in ZnT3 expression seen in apoptotic cells following PDEP suggests a role for this zinc transporter in the apoptotic pathway, possibly through controlling zinc fluxes. As exposure to diesel exhaust particles is associated with asthma and apoptosis in airway cells, diesel exhaust particles may directly contribute to asthma by inducing epithelial cell death through apoptotic pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The next generation of diesel emission control devices includes 4-way catalyzed filtration systems (4WCFS) consisting of both NOx and diesel particulate matter (DPM) control. A methodology was developed to simultaneously evaluate the NOx and DPM control performance of miniature 4WCFS made from acicular mullite, an advanced ceramic material (ACM), that were challenged with diesel exhaust. The impact of catalyst loading and substrate porosity on catalytic performance of the NOx trap was evaluated. Simultaneously with NOx measurements, the real-time solid particle filtration performance of catalyst-coated standard and high porosity filters was determined for steady-state and regenerative conditions. The use of high porosity ACM 4-way catalyzed filtration systems reduced NOx by 99% and solid and total particulate matter by 95% when averaged over 10 regeneration cycles. A "regeneration cycle" refers to an oxidizing ("lean") exhaust condition followed by a reducing ("rich") exhaust condition resulting in NOx storage and NOx reduction (i.e., trap "regeneration"), respectively. Standard porosity ACM 4-way catalyzed filtration systems reduced NOx by 60-75% and exhibited 99.9% filtration efficiency. The rich/lean cycling used to regenerate the filter had almost no impact on solid particle filtration efficiency but impacted NOx control. Cycling resulted in the formation of very low concentrations of semivolatile nucleation mode particles for some 4WCFS formulations. Overall, 4WCFS show promise for significantly reducing diesel emissions into the atmosphere in a single control device. © 2013 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure to diesel particulate matter from diesel exhaust has been shown to have adverse health effects in humans. In 2012 The International Agency for Research on Cancer classified diesel exhaust as a group 1 know human carcinogen. Because of the associated health effects, there has been a strong push to reduce the amount of diesel exhaust present in the mining industry. Biodiesel is one to the more common and promising control options used to reduce the amount of diesel particulate matter that is generated during fuel combustion. The use of biodiesel over petroleum diesel has been shown to reduce not only particulate matter, but hydro carbon and carbon monoxide mass emissions as well. Personal and area samples were collected at an underground metal mine in the northwestern United States to evaluate the current blend of B70 biodiesel. The objective of this research was to evaluate the carbon levels associated with diesel particulate matter generated from the combustion of a B70 biodiesel. Data was also compared to past studies on which diesel particulate matter from petroleum diesel was evaluated. Samples were taken on four separate four day campaigns between March and October of 2014. Area samples were taken from 7 different areas in the mine and personal samples were taken from a 20 person cohort. The equipment used for sampling was compliant with the NIOSH 5040 method. Statistical analysis of the results was done using Minitab 17 software. The statistical analysis showed that the total carbon concentrations from biodiesel were well below the MSHA exposure limit. Results also showed that organic/elemental carbon ratios were consistent with past studies as the concentrations of organic carbon were significantly higher than those of elemental carbon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Generally, the magnitude of pollutant emissions from diesel engines running on biodiesel fuel is ultimately coupled to the structure of respective molecules that constitutes the fuel. Previous studies demonstrated the relationship between organic fraction of PM and its oxidative potential. Herein, emissions from a diesel engine running on different biofuels were analysed in more detail to explore the role different organic fractions play in the measured oxidative potential. In this work, a more detailed chemical analysis of biofuel PM was undertaken using a compact Time of Flight Aerosol Mass Spectrometer (c-ToF AMS). This enabled a better identification of the different organic fractions that contribute to the overall measured oxidative potentials. The concentration of reactive oxygen species (ROS) was measured using a profluorescent nitroxide molecular probe 9-(1,1,3,3-tetramethylisoindolin-2-yloxyl-5-ethynyl)-10-(phenylethynyl)anthracene (BPEAnit). Therefore the oxidative potential of the PM, measured through the ROS content, although proportional to the total organic content in certain cases shows a much higher correlation with the oxygenated organic fraction as measured by the c-ToF AMS. This highlights the importance of knowing the surface chemistry of particles for assessing their health impacts. It also sheds light onto new aspects of particulate emissions that should be taken into account when establishing relevant metrics for assessing health implications of replacing diesel with alternative fuels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Back-pressure on a diesel engine equipped with an aftertreatment system is a function of the pressure drop across the individual components of the aftertreatment system, typically, a diesel oxidation catalyst (DOC), catalyzed particulate filter (CPF) and selective catalytic reduction (SCR) catalyst. Pressure drop across the CPF is a function of the mass flow rate and the temperature of the exhaust flowing through it as well as the mass of particulate matter (PM) retained in the substrate wall and the cake layer that forms on the substrate wall. Therefore, in order to control the back-pressure on the engine at low levels and to minimize the fuel consumption, it is important to control the PM mass retained in the CPF. Chemical reactions involving the oxidation of PM under passive oxidation and active regeneration conditions can be utilized with computer numerical models in the engine control unit (ECU) to control the pressure drop across the CPF. Hence, understanding and predicting the filtration and oxidation of PM in the CPF and the effect of these processes on the pressure drop across the CPF are necessary for developing control strategies for the aftertreatment system to reduce back-pressure on the engine and in turn fuel consumption particularly from active regeneration. Numerical modeling of CPF's has been proven to reduce development time and the cost of aftertreatment systems used in production as well as to facilitate understanding of the internal processes occurring during different operating conditions that the particulate filter is subjected to. A numerical model of the CPF was developed in this research work which was calibrated to data from passive oxidation and active regeneration experiments in order to determine the kinetic parameters for oxidation of PM and nitrogen oxides along with the model filtration parameters. The research results include the comparison between the model and the experimental data for pressure drop, PM mass retained, filtration efficiencies, CPF outlet gas temperatures and species (NO2) concentrations out of the CPF. Comparisons of PM oxidation reaction rates obtained from the model calibration to the data from the experiments for ULSD, 10 and 20% biodiesel-blended fuels are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particulate pollution has been widely recognised as an important risk factor to human health. In addition to increases in respiratory and cardiovascular morbidity associated with exposure to particulate matter (PM), WHO estimates that urban PM causes 0.8 million premature deaths globally and that 1.5 million people die prematurely from exposure to indoor smoke generated from the combustion of solid fuels. Despite the availability of a huge body of research, the underlying toxicological mechanisms by which particles induce adverse health effects are not yet entirely understood. Oxidative stress caused by generation of free radicals and related reactive oxygen species (ROS) at the sites of deposition has been proposed as a mechanism for many of the adverse health outcomes associated with exposure to PM. In addition to particle-induced generation of ROS in lung tissue cells, several recent studies have shown that particles may also contain ROS. As such, they present a direct cause of oxidative stress and related adverse health effects. Cellular responses to oxidative stress have been widely investigated using various cell exposure assays. However, for a rapid screening of the oxidative potential of PM, less time-consuming and less expensive, cell-free assays are needed. The main aim of this research project was to investigate the application of a novel profluorescent nitroxide probe, synthesised at QUT, as a rapid screening assay in assessing the oxidative potential of PM. Considering that this was the first time that a profluorescent nitroxide probe was applied in investigating the oxidative stress potential of PM, the proof of concept regarding the detection of PM–derived ROS by using such probes needed to be demonstrated and a sampling methodology needed to be developed. Sampling through an impinger containing profluorescent nitroxide solution was chosen as a means of particle collection as it allowed particles to react with the profluorescent nitroxide probe during sampling, avoiding in that way any possible chemical changes resulting from delays between the sampling and the analysis of the PM. Among several profluorescent nitroxide probes available at QUT, bis(phenylethynyl)anthracene-nitroxide (BPEAnit) was found to be the most suitable probe, mainly due to relatively long excitation and emission wavelengths (λex= 430 nm; λem= 485 and 513 nm). These wavelengths are long enough to avoid overlap with the background fluorescence coming from light absorbing compounds which may be present in PM (e.g. polycyclic aromatic hydrocarbons and their derivatives). Given that combustion, in general, is one of the major sources of ambient PM, this project aimed at getting an insight into the oxidative stress potential of combustion-generated PM, namely cigarette smoke, diesel exhaust and wood smoke PM. During the course of this research project, it was demonstrated that the BPEAnit probe based assay is sufficiently sensitive and robust enough to be applied as a rapid screening test for PM-derived ROS detection. Considering that for all three aerosol sources (i.e. cigarette smoke, diesel exhaust and wood smoke) the same assay was applied, the results presented in this thesis allow direct comparison of the oxidative potential measured for all three sources of PM. In summary, it was found that there was a substantial difference between the amounts of ROS per unit of PM mass (ROS concentration) for particles emitted by different combustion sources. For example, particles from cigarette smoke were found to have up to 80 times less ROS per unit of mass than particles produced during logwood combustion. For both diesel and wood combustion it has been demonstrated that the type of fuel significantly affects the oxidative potential of the particles emitted. Similarly, the operating conditions of the combustion source were also found to affect the oxidative potential of particulate emissions. Moreover, this project has demonstrated a strong link between semivolatile (i.e. organic) species and ROS and therefore, clearly highlights the importance of semivolatile species in particle-induced toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Airborne particulate matter pollution is of concern for a number of reasons and has been widely recognised as an important risk factor to human health. A number of toxicological and epidemiological studies reported negative health effects on both respiratory and cardiovascular system. Despite the availability of a huge body of research, the underlying toxicological mechanisms by which particles induce adverse health effects are not yet entirely understood. The production of reactive oxygen species (ROS) has been shown to induce oxidative stress, which is proposed as a mechanism for many of the adverse health outcomes associated with exposure to particulate matter (PM). Therefore, it is crucial to introduce a technique that will allow rapid and routine screenings of the oxidative potential of PM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numbers of diesel engines in both stationary and mobile applications are increasing nowadays. Diesel engines emit lower Hydrocarbon (HC) and Carbon monoxide (CO) than gasoline engines. However, they can produce more nitrogen oxides (NOx) and have higher particulate matter (PM). On the other hand, emissions standards are getting stringent day by day due to considerable concerns about unregulated pollutants and particularly ultrafine particles deleterious effect on human health. Non-thermal plasma (NTP) treatment of exhaust gas is known as a promising technology for both NOx and PM reduction by introducing plasma inside the exhaust gas. Vehicle exhaust gases undergo chemical changes when exposed to plasma. In this study, the PM removal mechanism using NTP by applying high voltage pulses of up to 20 kVpp with a repetition rate of 10 kHz are investigated. It is found that, voltage increase not necessarily has a positive effect on PM removal in diesel engine emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following the growing need for adoption of alternative fuels, this project aimed at getting more information on the oxidative potential of biodiesel particulate matter. Within this scope, the physical and chemical characteristics of biodiesel PM were analysed which lead to identification of reactive organic fractions. An in-house developed proflurescent nitroxide probe was used. This project further developed in-depth understanding of the chemical mechanisms following the detection of the oxidative potential of PM. This knowledge made a significant contribution to our understanding of processes behind negative health effects of pollution and enabled us to further develop new techniques to monitor it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several cell-free assays are currently used to quantify and detect the Reactive Oxygen Species (ROS). All of them have certain limitations, do not provide direct comparison of results and, to date, none of these assays have been acknowledged as the most suitable acellular assay and none has yet been adopted for investigation of potential PM toxicity. These assays include DTT, ascorbic acid, DCFHDA and PFN assays which have been used in measurements of the particles generated from various combustion sources such as diesel engine, wood smoke (or biomass burning) and cigarette smoke, as well as for outdoor measurements. All the probes use different units for expressing redox properties of PM. Also, their reactivity is being triggered by different types of ROS. This limits the direct comparison of the results that are reporting the toxicity of the same aerosol type measured with various probes. This study is evaluating and comparing the various assays in order to develop deeper understanding of their capabilities, selectivity as well as improve understanding of the underlying chemical mechanisms. Keywords: DTT, DCFH-DA, PFN, BPEA-nit, Ascorbic acid, oxidative potential

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial variability of aerosol number and mass along roads was determined in different regions (urban, rural and coastal-marine) of the Netherlands. A condensation particle counter (CPC) and an optical aerosol spectrometer (LAS-X) were installed in a van along with a global positioning system (GPS). Concentrations were measured with high-time resolutions while driving allowing investigations not possible with stationary equipment. In particular, this approach proves to be useful to identify those locations where numbers and mass attain high levels ('hot spots'). In general, concentrations of number and mass of particulate matter increase along with the degree of urbanisation, with number concentration being the more sensitive indicator. The lowest particle numbers and PM1-concentrations are encountered in a coastal and rural area: <5000cm-3 and 6μgm-3, respectively. The presence of sea-salt material along the North-Sea coast enhances PM>1-concentrations compared to inland levels. High-particle numbers are encountered on motorways correlating with traffic intensity; the largest average number concentration is measured on the ring motorway around Amsterdam: about 160000cm-3 (traffic intensity 100000vehday-1). Peak values occur in tunnels where numbers exceed 106cm-3. Enhanced PM1 levels (i.e. larger than 9μgm-3) exist on motorways, major traffic roads and in tunnels. The concentrations of PM>1 appear rather uniformly distributed (below 6μgm-3 for most observations). On the urban scale, (large) spatial variations in concentration can be explained by varying intensities of traffic and driving patterns. The highest particle numbers are measured while being in traffic congestions or when behind a heavy diesel-driven vehicle (up to 600×103cm-3). Relatively high numbers are observed during the passages of crossings and, at a decreasing rate, on main roads with much traffic, quiet streets and residential areas with limited traffic. The number concentration exhibits a larger variability than mass: the mass concentration on city roads with much traffic is 12% higher than in a residential area at the edge of the same city while the number of particles changes by a factor of two (due to the presence of the ultrafine particles (aerodynamic diameter <100nm). It is further indicated that people residing at some 100m downwind a major traffic source are exposed to (still) 40% more particles than those living in the urban background areas. © 2004 Elsevier Ltd. All rights reserved.