979 resultados para Dies (Metal-working)
Resumo:
This thesis focuses on the tribological performance of tool surfaces in two steel working operations, namely wire drawing and hot rolling. In all forming operations dimensions and surface finish of the products are of utmost importance. Forming basically includes three parts – forming conditions excluded – that may be changed; work material, tool and (possibly) lubricant. In the interface between work material and tool, the conditions are very aggressive with – generally or locally – high temperatures and pressures. The surfaces will be worn in various ways and this will change the conditions in the process. Consequently, the surface finish as well as the dimensions of the formed product may change and in the end, the product will not fulfil the requirements of the customer. Therefore, research and development in regard to wear, and consequently tribology, of the forming tools is of great interest. The investigations of wire drawing dies focus on coating adhesion/cohesion, surface characteristics and material transfer onto the coated steel both in laboratory scale as well as in the wire drawing process. Results show that it in wire drawing is possible to enhance the tribological performance of drawing dies by using a lubricant together with a steel substrate coated by a polished, dual-layer coating containing both hard and friction-lowering layers. The investigations of hot rolling work rolls focus on microstructure and hardness as well as cracking- and surface characteristics in both laboratory scale and in the hot strip mill. Results show that an ideal hot work roll material should be made up of a matrix with high hardness and a large amount of complex, hard carbides evenly distributed in the microstructure. The surface failure mechanisms of work rolls are very complex involving plastic deformation, abrasive wear, adhesive wear, mechanical and thermal induced cracking, material transfer and oxidation. This knowledge may be used to develop new tools with higher wear resistance giving better performance, lower costs and lower environmental impact.
Resumo:
Silchester is the site of a major late Iron Age and Roman town (Calleva Atrebatum), situated in northern Hampshire (England (UK)) and occupied between the late first century BC and the fifth or sixth century AD. Extensive evidence of the nature of the buildings and the plan of the town was obtained from excavations undertaken between 1890 and 1909. The purpose of this study was to use soil geochemical analyses to reinforce the archaeological evidence particularly with reference to potential metal working at the site. Soil analysis has been used previously to distinguish different functions or land use activity over a site and to aid identification and interpretation of settlement features (Entwistle et al., 2000). Samples were taken from two areas of the excavation on a 1-metre grid. Firstly from an area of some 500 square metres from contexts of late first/early second century AD date throughout the entirety of a large 'town house' (House 1) from which there was prima facie evidence of metalworking.
Resumo:
This paper focuses on the impact of Indonesia's economic crisis on small and medium-sized enterprises (SMEs). It shows how the performance of SMEs during the crisis varied widely even in the same industrial subsector, and found that the factors most affecting performance have been market orientation and the linkages that the SMEs have formed with the buyers of their products. Well-performing SMEs were found to have utilized putting-out linkages with wholesalers which enabled them to switch to products having better markets. On the other hand, the SMEs which had subcontracting linkages with assemblers or contracting linkages with user-factories (with the exception of SMEs having export-oriented linkages) suffered badly in the crisis because of specificity of products with little room for switching. The paper also found that exposure to debt due to borrowing for investment has been another factor affecting performance, but that enterprise size has had no linear correlation with performance.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Includes index.
Resumo:
Book No. 2.
Resumo:
"June 1968."
Resumo:
The hot-working characteristics of the metal-matrix composite (MMC) Al-10 vol % SiC-particulate (SiCp) powder metallurgy compacts in as-sintered and in hot-extruded conditions were studied using hot compression testing. On the basis of the stress-strain data as a function of temperature and strain rate, processing maps depicting the variation in the efficiency of power dissipation, given by eegr = 2m/(m+1), where m is the strain rate sensitivity of flow stress, have been established and are interpreted on the basis of the dynamic materials model. The as-sintered MMC exhibited a domain of dynamic recrystallization (DRX) with a peak efficiency of about 30% at a temperature of about 500°C and a strain rate of 0.01 s�1. At temperatures below 350°C and in the strain rate range 0.001�0.01 s�1 the MMC exhibited dynamic recovery. The as-sintered MMC was extruded at 500°C using a ram speed of 3 mm s�1 and an extrusion ratio of 10ratio1. A processing map was established on the extruded product, and this map showed that the DRX domain had shifted to lower temperature (450°C) and higher strain rate (1 s�1). The optimum temperature and strain rate combination for powder metallurgy billet conditioning are 500°C and 0.01 s�1, and the secondary metal-working on the extruded product may be done at a higher strain rate of 1 s�1 and a lower temperature of 425°C.
Resumo:
The main objective of this dissertation is to examine the implications of technological capacities in the improvement of technical performance indexes, specifically at the company level. These relationships were examined in a small sample of metal-working enterprises in the state of Rio de Janeiro (1960 to 2006). Although diverse studies on technological competences have been carried out in the last twenty years, a gap in empirical studies still exist that correlate the performance of companies in the context of developing countries, especially in Brazil. Aiming to contribute to a reduction of these gaps, this dissertation examines the questions by the light of available models in literature, which opting themselves to using operational indexes of companies. For drawing the accumulation of technological competences in this study, the metric proposal by Figueiredo (2000) shall be used indicating the levels of technological qualification in process, product, and equipment functions. The empirical evidence examined in this dissertation is both qualitative and quantitative in nature and were collected, first hand, through extensive field research involving informal interviews, meetings, direct-site observation and document analysis. In relation to the results, the evidence suggests that: - In terms of technological accumulation, a company reached Level 5 of technological capacity in process and organization of production as well as product and equipment. Three companies obtained Level 4 in the function process function while two others had reached the same technological level in the functions of product and equipment. Two companies had reached Level 3 in the product and equipment functions and one remained this level in the function of process; - In terms of the rate of accumulation of technological capacities, the observed companies had reached Level 4 needs 29 years in process function, 32 years in product function and 29 years in equipment function; - In terms of improvement performance pointers, a company which reached Level 5 of technological capacity improved in 70% of its indicators of performance, while the company that had achieved Level 4 had raised its pointers 60% and the other companies had gotten improved in the order of 40%. It was evidenced that the majority of the pointers of the companies with higher levels of technological capacities had obtained better performance. This dissertation contributes to advancing the strategic management of companies in metal-working segment to understanding internal accumulation of technological capacity and indicators of performance especially in the field of empirical context studied. This information offers management examples of how to improve competitive performance through the accumulation of technological capacities in the process, product and equipment functions.
Resumo:
"June 1994."
Resumo:
In this paper, the mechanical properties of bulk single-phase γ-Y2Si2O7 ceramic are reported. γ-Y2Si2O7 exhibits low shear modulus, excellent damage tolerance, and thus has a good machinability ready for metal working tools. To understand the underlying mechanism of machinability, drilling test, Hertzian contact test, and density functional theory (DFT) calculation are employed. Hertzian contact test demonstrates that γ-Y2Si2O7 is a "quasi-plastic" ceramic and the intrinsically weak interfaces contribute to its machinability. Crystal structure characteristics and DFT calculations of γ-Y2Si2O7 suggest that some weakly bonded planes, which involve Y-O bonds that can be easily broken, are the sources of the low shear deformation resistance and good machinability.
Resumo:
The article peruses the frictional response of an important metal working lubricant additive, sodium oleate. Frictional force microscopy is used to track the response of molecules self-assembled on a steel substrate of 3–4 nm roughness at 0% relative humidity. The friction-normal load characteristic emerges as bell-shaped, where the peak friction and normal load at peak friction are both sensitive to substrate roughness. The frictional response at loads lower than that associated with the peak friction is path reversible while at higher loads the loading and unloading paths are different. We suggest that a new low-friction interface material is created when the normal loads are high.
Resumo:
Processing maps developed on the basis of the Dynamic Materials Model provide valuable information that might help the metal working industry in solving problems related to workability and microstructural control in commercial alloys. In this research, the processing maps for an as-cast AZ31 magnesium alloy are presented. The results are validated via microstructural observations, clearly delineating safe and unsafe regimes for further process design of this alloy.