978 resultados para Didactic laboratory of physics
Resumo:
The articles are reprints or translations from scientific periodicals.
Resumo:
The belief of using experimental activities in the teaching of Physics as a strategy to produce a more efficient teaching-learning process is great among teachers and the school community. However, there are many difficulties for their implementation and when it happens they do not contribute for an improvement in class efficiency due to the method used. In this work, we developed a proposal for using these activities in Physics classes in high school, from a critical-reflexive approach in which the constant dialogue between the participants in the teaching-learning process is fundamental. The work was developed in two ways. The first, where the author/writer created an educational material and applied it in classroom and a second one, where he presented the idea to other teachers and undergraduate students from the Physics course at UFRN and IFRN (former CEFET-RN) through an extended workshop entitled "The role of experimental activities in the Physics teaching". This workshop had the duration of 60 hours and was implemented in 4 steps: i) sensitization and formation, ii) material development, iii) material implementation and iv) evaluation by teachers and students from the classes where the material was applied. The goal of this workshop was to present the approach, evaluate how the participants received the idea and how they would apply it in real situations. The results of the application in classroom allowed us to reach some conclusions. This approach was well received by the students as well as by the workshop participants. Despite some difficulties in relation to the handling of the implementation results by the workshop participants, they indicated changes in these professionals teaching practice and the introduction of experimental activities has been an important subsidy to assist them in Physics class in high school
Resumo:
Intense heavy ion beams offer a unique tool for generating samples of high energy density matter with extreme conditions of density and pressure that are believed to exist in the interiors of giant planets. An international accelerator facility named FAIR (Facility for Antiprotons and Ion Research) is being constructed at Darmstadt, which will be completed around the year 2015. It is expected that this accelerator facility will deliver a bunched uranium beam with an intensity of 5x10(11) ions per spill with a bunch length of 50-100 ns. An experiment named LAPLAS (Laboratory Planetary Sciences) has been proposed to achieve a low-entropy compression of a sample material like hydrogen or water (which are believed to be abundant in giant planets) that is imploded in a multi-layered target by the ion beam. Detailed numerical simulations have shown that using parameters of the heavy ion beam that will be available at FAIR, one can generate physical conditions that have been predicted to exist in the interior of giant planets. In the present paper, we report simulations of compression of water that show that one can generate a plasma phase as well as a superionic phase of water in the LAPLAS experiments.
Resumo:
É notório que o livro didático desempenha um papel fundamental na prática pedagógica da maioria dos professores de Física constituindo importante fonte de referência para professores e estudantes. Ao mesmo tempo representa a memória impressa das demandas e paradigmas de ensino, e procura atender às exigências prescritas na legislação e diretrizes, de uma determinada localidade e período. Atualmente, a inserção de Física Moderna e Contemporânea no currículo do Ensino Médio brasileiro está entre as prioridades, preconizando, entre. outros, o ensino do efeito fotoelétrico, em função da relevância do fenômeno ao corroborar a interpretação corpuscular da natureza da luz, e o consequente laureio de Albert Einstein com o Prêmio Nobel. Estudos realizados apontam que muitos dos livros didáticos apresentam a história do efeito fotoelétrico de maneira superficial ou errônea, e expõem incorretamente a função trabalho e o conceito de fóton (Klassen, 2011). Tendo em vista o exposto, objetivamos analisar como ocorre a apresentação do efeito fotoelétrico especificamente em dez coleções didáticas brasileiras aprovadas pelo Programa Nacional do Livro Didático do Ensino Médio 2012 do governo federal, tendo como aporte teórico as considerações de Yves Chevallard (Brockington e Pietrocola, 2005). Procuramos resposta para a seguinte pergunta: Quais são as transposições ocorridas na apresentação do efeito fotoelétrico (saber sábio) para se tornar o saber a ensinar em materiais escolares? Nossa análise centrou-se no processo de descontextualização, entendido como o processo pelo qual o saber sábio passa para que seja ensinável, sendo necessário que seja arrancado de seu contexto original, ou seja, o seu processo histórico.
Resumo:
The Modeling method of teaching has demonstrated well--‐documented success in the improvement of student learning. The teacher/researcher in this study was introduced to Modeling through the use of a technique called White Boarding. Without formal training, the researcher began using the White Boarding technique for a limited number of laboratory experiences with his high school physics classes. The question that arose and was investigated in this study is “What specific aspects of the White Boarding process support student understanding?” For the purposes of this study, the White Boarding process was broken down into three aspects – the Analysis of data through the use of Logger Pro software, the Preparation of White Boards, and the Presentations each group gave about their specific lab data. The lab used in this study, an Acceleration of Gravity Lab, was chosen because of the documented difficulties students experience in the graphing of motion. In the lab, students filmed a given motion, utilized Logger Pro software to analyze the motion, prepared a White Board that described the motion with position--‐time and velocity--‐time graphs, and then presented their findings to the rest of the class. The Presentation included a class discussion with minimal contribution from the teacher. The three different aspects of the White Boarding experience – Analysis, Preparation, and Presentation – were compared through the use of student learning logs, video analysis of the Presentations, and follow--‐up interviews with participants. The information and observations gathered were used to determine the level of understanding of each participant during each phase of the lab. The researcher then looked for improvement in the level of student understanding, the number of “aha” moments students had, and the students’ perceptions about which phase was most important to their learning. The results suggest that while all three phases of the White Boarding experience play a part in the learning process for students, the Presentations provided the most significant changes. The implications for instruction are discussed.
Resumo:
Mode of access: Internet.
Resumo:
Albert Kahn, architect. Built 1924. East University on site of old medical building which was razed in 1914. Also called New Physics and East Physics.
Resumo:
Born Riga 1903, died New York 1976. Married Dr. Anatol Kaminsky, a Russian-born doctor who got his medical education in France. They escaped to France and Morocco, and reached the USA in 1942
Resumo:
The aim of the doctoral dissertation was to further our theoretical and empirical understanding of media education as practised in the context of Finnish basic education. The current era of intensive use of the Internet is recognised too. The doctoral dissertation presents the subject didactic dimension of media education as one of the main results of the conceptual analysis. The theoretical foundation is based on the idea of dividing the concept of media education into media and education (Vesterinen et al., 2006). As two ends of the dimension, these two can be understood didactically as content and pedagogy respectively. In the middle, subject didactics is considered to have one form closer to content matter (Subject Didactics I learning about media) and another closer to general pedagogical questions (Subject Didactics II learning with/through media). The empirical case studies of the dissertation are reported with foci on media literacy in the era of Web 2.0 (Kynäslahti et al., 2008), teacher reasoning in media educational situations (Vesterinen, Kynäslahti - Tella, 2010) and the research methodological implications of the use of information and communication technologies in the school (Vesterinen, Toom - Patrikainen, 2010). As a conclusion, Media-Based Media Education and Cross-Curricular Media Education are presented as two subject didactic modes of media education in the school context. Episodic Media Education is discussed as the third mode of media education where less organised teaching, studying and learning related to media takes place, and situations (i.e. episodes, if you like) without proper planning or thorough reflection are in focus. Based on the theoretical and empirical understanding gained in this dissertation, it is proposed that instead of occupying a corner of its own in the school curriculum, media education should lead the wider change in Finnish schools.