993 resultados para Dichlorophenoxyacetic acid -- Biodegradation
Resumo:
An enzyme which cleaves the benzene ring of 3,5-dichiorocatechol has been purified to homogeneity from Pseudomonas cepacia CSV90, grown with 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. The enzyme was a nonheme ferric dioxygenase and catalyzed the intradiol cleavage of all the examined catechol derivatives, 3,5-dichlorocatechol having the highest specificity constant of 7.3 μM−1 s−1 in an air-saturated buffer. No extradiol-cleaving activity was observed. Thus, the enzyme was designated as 3,5-dichlorocatechol 1,2-dioxygenase. The molecular weight of the native enzyme was ascertained to be 56,000 by light scattering method, while the Mr value of the enzyme denatured with 6 M guanidine-HCl or sodium dodecyl sulfate was 29,000 or 31,600, respectively, suggesting that the enzyme was a homodimer. The iron content was estimated to be 0.89 mol per mole of enzyme. The enzyme was deep red and exhibited a broad absorption spectrum with a maximum at around 425 nm, which was bleached by sodium dithionite, and shifted to 515 nm upon anaerobic 3,5-dichlorocatechol binding. The catalytic constant and the Km values for 3,5-dichlorocatechol and oxygen were 34.7 s−1 and 4.4 and 652 μM, respectively, at pH 8 and 25°C. Some heavy metal ions, chelating agents and sulfhydryl reagents inhibited the activity. The NH2-terminal sequence was determined up to 44 amino acid residues and compared with those of the other catechol dioxygenases previously reported.
Resumo:
Reactive species generated by Fe0 oxidation promoted by O2 (catalyzed or not by ligands) are able to degrade contaminant compounds like the herbicide 2,4-dichlorophenoxyacetic acid. The degradation of 2,4-D was influenced by the concentrations of zero valent iron (ZVI) and different ligands, as well as by pH. In the absence of ligands, the highest 2,4-D degradation rate was obtained at pH 3, while the highest percentage degradation (50%) was achieved at pH 5 after 120 min of reaction. Among the ligands studied (DTPA, EDTA, glycine, oxalate, and citrate), only ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) significantly enhanced oxidation of 2,4-D. This increase in oxidation was observed at all pH values tested (including neutral to alkaline conditions), indicating the feasibility of the technique for treatment of contaminated water. In the presence of EDTA, the oxidation rate was greater at pH 3 than at pH 5 or 7. Increasing the EDTA concentration increased the rate and percentage of 2,4-D degradation, however increasing the Fe0 concentration resulted in the opposite behavior. It was found that degradation of EDTA and 2,4-D occurred simultaneously, and that the new methodology avoided any 2,4-D removal by adsorption/coprecipitation. © 2013 Elsevier Ltd.
Resumo:
Enhanced biodegradation of organic xenobiotic compounds in the rhizosphere is frequently recorded although the specific mechanisms are poorly understood. We have shown that the mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) is enhanced in soil collected from the rhizosphere of Trifolium pratense[e.g. maximum mineralization rate = 7.9 days(-1) and time at maximum rate (t(1)) = 16.7 days for 12-day-old T. pratense soil in comparison with 4.7 days(-1) and 25.4 days, respectively, for non-planted controls). The purpose of this study was to gain a better understanding of the plant-microbe interactions involved in rhizosphere-enhanced biodegradation by narrowing down the identity of the T. pratense rhizodeposit responsible for stimulating the microbial mineralization of 2,4-D. Specifically, we investigated the distribution of the stimulatory component(s) among rhizodeposit fractions (exudates or root debris) and the influence of soil properties and plant species on its production. Production of the stimulatory rhizodeposit was dependent on soil pH (e.g. t(1) for roots grown at pH 6.5 was significantly lower than for those grown at pH 4.4) but independent of soil inorganic N concentration. Most strikingly, the stimulatory rhizodeposit was only produced by T. pratense grown in non-sterile soil and was present in both exudates and root debris. Comparison of the effect of root debris from plant species (three each) from the classes monocotyledon, dicotyledon (non-legume) and dicotyledon (legume) revealed that legumes had by far the greatest positive impact on 2,4-D mineralization kinetics. We discuss the significance of these findings with respect to legume-rhizobia interactions in the rhizosphere.
Resumo:
Surface-enhanced Raman scattering (SERS) spectra of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was obtained by employing a bi-layer gold substrate, assembled by the reduction of Au(III) over gold-seeded nanoparticles immobilized on functionalized glass substrates. The SERS signal was linear with the logarithm of the solution concentrations between 1.0 x 10(-7) mol L(-1) and 1.0 x 10(-3) mol L(-1), indicating that the bi-layer gold substrate affords a significant dynamic range for SERS, providing an excellent analytical response within this concentration range, and revealing the high sensitivity of the gold surface towards such analyte. In addition, using the same gold substrate, a similar calibration curve was obtained for crystal-violet (CV), and it was possible to identify the concentration limit corresponding to the transition from the average SERS to the nonlinear SERS response. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The acute toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D), a herbicide, was studied in chicks dosed with 100, 300, 500, or 600 mg 2,4-D/kg BW, by the oral route. Clinical, laboratory, and histopathological methods were used as indicators of toxicity. After acute exposure, the herbicide decreased motor activity and induced muscular weakness and motor incoordination; decreased weight gain; increased serum creatine kinase (CK) and alkaline phosphatase (AP) activities and serum uric acid (UA), creatinine (CR), and total proteins (TP) levels; and did not change serum aspartate aminotransferase (AST) or alanine aminotransferase (ALT) activities. These changes were time-and dose-dependent and reversible. The LD50 (lethal dose 50%) calculated for oral 2,4-D in chicks was 420 mg/kg BW (385 to 483). Chromatographic analysis of the serum of the intoxicated chicks showed the presence of the herbicide; the amount found was dose-and time-dependent, increasing from 2 to 8 h after exposure and decreasing afterwards. Histopathological post-mortem studies conducted on intoxicated chicks showed hepatic (vacuolar degeneration of the hepatocytes), renal (tubular nephrosis), and intestinal (hemorragic) lesions. Taken together, the observed alterations mainly reflected kidney and muscle tissue damage, although hepatic toxicity may also have occurred after acute 2,4-D intoxication.
Resumo:
The acute toxicity of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in cattle. Steers were orally treated with 100, 300 or 600 mg 2,4-D/kg. Behavioral alterations, heart and respiratory functions, rectal temperature and ruminal movements were observed at 2, 4, 8, 12, 24, 48, 72 and 96 h after treatments. At these moments, blood and urine samples were collected and serum 2,4-D levels were determined. Results show that animals' vital functions and hematocrit were not modified by the herbicide. Other signs were dose and time-dependent and included motor alterations (weakness, lethargy, decreased general activity) and decreased ruminal movements and proteinuria. The herbicide was rapidly excreted and the intoxication signs were completely reversed. 2,4-D is an herbicide of small toxicological consequences for cattle kept under in natural grazing systems.
Resumo:
The 2,4-dichlorophenoxyacetic acid (2,4-D) is one of the most applied herbicides around the world to control broad leave herbs in many crops: In this study, a method was developed for simultaneous extraction and determination of 2,4D and its major transformation product, i.e., the 2,4-dichlorophenol (2,4-DCP), in soil samples. The herbicide and its degradation product were extracted twice from soil samples, after acidification, by dichloromethane on ultrasound system for 1 h. Both extracts were combined and filtrated in qualitative filter paper and Celitee. The total extract was concentrated in rotatory evaporator, dried under N-2 and finally dissolved in 1 ml of methanol. High Performance Liquid Chromatography with UV detection at 230 nm was used for analysis. Recoveries were obtained from soil samples fortified at 0.1, 1.0, 2.0, 3.0 and 4.0 mg kg(-1) levels and the results varied from 85 to 111% (for 2,4-D) and from 95 to 98% (for 2,4-DCP). For both compounds, the limits of quantification were 0.1 mg kg(-1), which were the loss level at which the accuracy and the precision were studied. Nevertheless, the limits of detection, calculated by considering the blank standard deviation and the minimum concentration level, were 0.03 and 0.02 mg kg for 2,4-D and 2,4-DCP, respectively. This proposed method was applied to soil samples of eucalyptus crops, which was previously treated with the herbicide. Despite that, neither 2,4-D nor its degradation product were detected 30 days after the herbicide application. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
The effects of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on the central nervous system (CNS) were studied in rats. Behavioural and neurochemical studies were performed. Results show that acute and oral administration of dimethylamine 2,4-D was able to decrease locomotion and rearing frequencies and to increase immobility duration of rats observed in an open-field test. Treatment of rats with p-chlorophenylalanine (PCPA) was unable to change rat's open-field behaviour; 5-hydroxytryptophan (5-HTP) administration not only increased locomotion and rearing frequences but also decreased immobility duration. Pretreatment of the rats with PCPA and 5-HTP decreased and increased dimethylamine 2,4-D effects, respectively. The herbicide was not able to change the striatal levels of dopamine and homovanilic acid but decreased the striatal levels of serotonin (5-HT), as observed for the doses of 100 and 200 mg/kg and increased those of 5-hydroxyindoleacetic acid (5-HIAA) as measured after the 200 mg/kg dose treatment. When the levels of serotonin and 5-HIAA were measured at the brain stem level, only those of 5-HIAA were modified, being increased by diethylamine 2,4-D (60; 100 and 200 mg/kg); this increment on 5-HIAA levels was observed even 1 hr after pesticide administration. Further analysis showed that 2,4-D concentrations chromatographycally detected both in serum and brain of the intoxicated animals were dose-dependent, being found as early as 1 hr after the smaller dose of the herbicide used (10 mg/kg). The results suggest that diethylamine 2,4-D modify 5-HT functional activity within the CNS. Thus, the effects of the herbicide on open-field behaviour of rats could be attributed to a direct or indirect pesticide action on serotoninergic systems.
Resumo:
The acute, subchronic and chronic toxicities of 2,4- dichlorophenoxyacetic acid (2,4-D) were studied in rats. Animals were exposed acutely (600 mg/kg), subchronically (200 ppm for 30 d) and chronically (200 ppm for 180 d) to 2,4-D by the oral route. Clinical, laboratory and histopathological methods were used as indicators of toxicity. After acute exposure, the herbicide decreased locomotor activity and induced ataxia, sedation, muscular weakness (mainly of the hind quarters) and gasping for breath; increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), alkaline phosphatase (AP), amylase activities and creatinine levels; decreased total protein (TP) and glucose levels; and increased hematocrit values. Subchronic and chronic 2,4-D exposures did not induce overt clinical signs or symptoms of intoxication. However, subchronic herbicide exposure increased AST activity and albumin and hematocrit values, and chronic exposure increased AST, AP and LDH activities, decreased amylase and glucose levels, but did not change hematocrit values. Chromatographic analysis of the serum of chronically exposed rats showed the presence of the herbicide; the amount found (3.76 ± 1.16 mg/ml) suggested the absence of 2,4-D accumulation within the body. Although macroscopic or histopathological lesions were not observed in acutely, subchronically or chronically 2,4-D exposed rats, the laboratory data obtained suggest tissue injuries after dosing, since the results are considered early indicators of primarily hepatic and muscle tissue damage.
Resumo:
The 2,4 dichlorophenoxyacetic acid (2,4-D) is a systemic herbicide whose effects in animal organic systems have been examined in previous studies, being the neurotoxicity considered the predominant effect. However, the studies that detect the 2,4-D neurotoxicity have merely focused in the central nervous system, and therefore, little is known about the effect of this herbicide in the enteric nervous system. This study aimed to verifying the 2,4-D effects on the myenteric neurons in duodenum of Wistar rats. Ten 60-day-old male Wistar rats (Rattus norvegicus) were divided in two groups: control group (C) that did not receive 2,4-D and experimental group (E) that received 5.0 mg of 2,4-D/kg for 15 days. At the end of experimental period, the animal were euthanized, the duodenum was collected and processed for NADPH-diaphorase histochemical analysis in order to expose the nitrergic myenteric neurons (NADPH-dp). In the light microscopy analysis, the whole-mount preparation obtained from duodenum of each animal were image-captured in 120 and 40 fields, for quantitative and morphometric analyses of myenteric neurons, respectively. The neuronal density was not affected when comparing the two groups, but an increase (p > 0.05) of 8.5% was observed in the cell body area of neurons in the E group. In conclusion, the ingestion of 2,4-D at a dosage of 5.0 mg/kg body weight for 15 days does not change the neuronal density, but promotes the hypertrophy of NADPH-dp myenteric neurons in duodenum of the rats of this study.
Resumo:
Synthetic chemical elicitors of plant defense have been touted as a powerful means for sustainable crop protection. Yet, they have never been successfully applied to control insect pests in the field. We developed a high-throughput chemical genetics screening system based on a herbivore-induced linalool synthase promoter fused to a β-glucuronidase (GUS) reporter construct to test synthetic compounds for their potential to induce rice defenses. We identified 2,4-dichlorophenoxyacetic acid (2,4-D), an auxin homolog and widely used herbicide in monocotyledonous crops, as a potent elicitor of rice defenses. Low doses of 2,4-D induced a strong defensive reaction upstream of the jasmonic acid and ethylene pathways, resulting in a marked increase in trypsin proteinase inhibitor activity and volatile production. Induced plants were more resistant to the striped stem borer Chilo suppressalis, but became highly attractive to the brown planthopper Nilaparvata lugens and its main egg parasitoid Anagrus nilaparvatae. In a field experiment, 2,4-D application turned rice plants into living traps for N. lugens by attracting parasitoids. • Our findings demonstrate the potential of auxin homologs as defensive signals and show the potential of the herbicide to turn rice into a selective catch crop for an economically important pest.
Resumo:
A cDNA encoding for a functional ornithine decarboxylase has been isolated from a cDNA library of carpels of tomato (Lycopersicon esculentum Mill.). Ornithine decarboxylase in tomato is represented by a single-copy gene that we show to be up-regulated during early fruit growth induced by 2,4-dichlorophenoxyacetic acid and gibberellic acid.
Resumo:
Atrazine and 2,4-D are common herbicides used for crop, lawn, and rangeland management. Photochemical degradation has been proposed as one safe and efficient remediation strategy for both 2,4-D and Atrazine. In the presence of iron(llI) and hydrogen peroxide these herbicides decay by both thermal and light induced oxidation. Past studies have focused primarily on sun light as an energy source. This work provides a mechanistic description of herbicide degradation incorporating intermediate degradation products produced in the dark and under well-defined light conditions.