957 resultados para Dicamba and 2,4-D


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Auxyn type herbicides such as dicamba and 2,4-D are alternative herbicides that can be used to control glyphosate-resistant hairy fleabane. With the forthcoming possibility of releasing dicamba-resistant and 2,4-D-resistant crops, use of these growth regulator herbicides will likely be an alternative that can be applied to the control of glyphosate resistant hairy fleabane (Conyza bonariensis). The objective of this research was to model the efficacy, through dose-response curves, of glyphosate, 2,4-D, isolated dicamba and glyphosate-dicamba combinations to control a brazilian hairy fleabane population resistant to glyphosate. The greenhouse dose-response studies were conducted as a completely randomized experimental design, and the rates used for dose response curve construction were 0, 120, 240, 480, 720 and 960 ga.i. ha(-1) for 2,4-D, dicamba and the dicamba combination, with glyphosate at 540 g a. e. ha(-1). The rates for glyphosate alone were 0, 180, 360, 540, 720 and 960 g a. e. ha(-1). Herbicides were applied when the plants were in a vegetative stage with 10 to 12 leaves and height between 12 and 15 cm. Hairy fleabane had low sensitivity to glyphosate, with poor control even at the 960 g a. e. ha(-1) rate. Dicamba and 2,4-D were effective in controlling the studied hairy fleabane. Hairy fleabane responds differently to 2,4-D and dicamba. The combination of glyphosate and dicamba was not antagonistic to hairy fleabane control, and glyphosate may cause an additive effect on the control, despite the population resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Auxyn type herbicides such as dicamba and 2,4-D are alternative herbicides that can be used to control glyphosate-resistant hairy fleabane. With the forthcoming possibility of releasing dicamba-resistant and 2,4-D-resistant crops, use of these growth regulator herbicides will likely be an alternative that can be applied to the control of glyphosate resistant hairy fleabane (Conyza bonariensis). The objective of this research was to model the efficacy, through dose-response curves, of glyphosate, 2,4-D, isolated dicamba and glyphosatedicamba combinations to control a brazilian hairy fleabane population resistant to glyphosate. The greenhouse dose-response studies were conducted as a completely randomized experimental design, and the rates used for dose response curve construction were 0, 120, 240, 480, 720 and 960 g a.i. ha-1 for 2,4-D, dicamba and the dicamba combination, with glyphosate at 540 g a.e. ha-1. The rates for glyphosate alone were 0, 180, 360, 540, 720 and 960 g a.e. ha-1. Herbicides were applied when the plants were in a vegetative stage with 10 to 12 leaves and height between 12 and 15 cm. Hairy fleabane had low sensitivity to glyphosate, with poor control even at the 960 g a.e. ha-1 rate. Dicamba and 2,4-D were effective in controlling the studied hairy fleabane. Hairy fleabane responds differently to 2,4-D and dicamba. The combination of glyphosate and dicamba was not antagonistic to hairy fleabane control, and glyphosate may cause an additive effect on the control, despite the population resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of 2,4-D (2,4-dichlorophenoxyacetic acid) and Dicamba (2-methoxy-3,6-dichlorobenzoic acid) residues in sugar cane, rice and corn was performed by a supercritical fluid extraction (SFE) method using CO2/acetone as extraction mix and an SFE apparatus developed in our laboratory. The extracts were cleaned up after extraction by both liquid- liquid partition and a Florisil column. Micellar electrokinetic capillary chromatography (MEKC) coupled with ultraviolet on-column detection was used for the analysis of these pesticides. The detection limits were improved by the preparation of a special detection cell with an increased pathlength that gave detection limits of ca. 0.6 pg for 2,4-D and Dicamba. Our results demonstrated that capillary electrophoresis can be a powerful new analytical tool for pesticide residue analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of inlake herbicide trials was to assess on the aquatic environment and resources, of in-lake of weeder 64 (2,4-0 amine) and Rodio (Glyphosate) water hyacinth the effects application to control water hyacinth. The experiments reported here specifically studied the effects of the herbicides on the diversity and abundance of aquatic macrofauna associated with the water weed. Results from this and similar experiments which assessed herbicide efficacy on water hyacinth; dissipation in water, impact on water quality, algal biomass and on diversity and abundance of zooplankton and macrofauna were all to be evaluated as input into the environmental impact assessment exercise required to facilitate decisions on the use of herbicides to control water hyacinth in Uganda.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tesis (Doctor en Ciencias con orientación en Química Analítica Ambiental) UANL, 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degradation of herbicides in aqueous solution by photo-Fenton process using ferrioxalate complex (FeOx) as source of Fe2+ was evaluated under blacklight irradiation. The commercial products of the herbicides tebuthiuron, diuron and 2,4-D were used. The multivariate analysis, more precisely, the response surface methodology was applied to evaluate the role of FeOx and hydrogen peroxide concentrations as variables in the degradation process, and in particular, to define the concentration ranges that result in the most efficient degradation of the herbicides. The degradation process was evaluated by the determination of the remaining total organic carbon content (TOC), by monitoring the decrease of the concentrations of the original compounds using HPLC and by the chloride ion release in the case of diuron and 2,4-D. Under optimized conditions, 20min were sufficient to mineralize 93% of TOC from 2,4-D and 90% of diuron, including oxalate. Complete dechlorination of these compounds was achieved after 10 min reaction. It was found that the most recalcitrant herbicide is tebuthiuron, while diuron shows the highest degradability. However, under optimized conditions the initial concentration of tebuthiuron was reduced to less than 15%, while diuron and 2,4-D were reduced to around 2% after only 1 min reaction. Furthermore, it was observed that the ferrioxalate complex plays a more important role than H2O2 in the photodegradation of these herbicides in the ranges of concentrations investigated. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2.4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe2+ ([Fe2+](0)) from 1.0 up to 2.5 mM, the rate in mmol of H2O2 fed into the system (F-H2O2,F-in) from 3.67 up to 7.33 mmol of H2O2/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atrazine and 2,4-D are common herbicides used for crop, lawn, and rangeland management. Photochemical degradation has been proposed as one safe and efficient remediation strategy for both 2,4-D and Atrazine. In the presence of iron(llI) and hydrogen peroxide these herbicides decay by both thermal and light induced oxidation. Past studies have focused primarily on sun light as an energy source. This work provides a mechanistic description of herbicide degradation incorporating intermediate degradation products produced in the dark and under well-defined light conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rhizosphere enhanced biodegradation of organic pollutants has been reported frequently and a stimulatory role for specific components of rhizodeposits postulated. As rhizodeposit composition is a function of plant species and soil type, we compared the effect of Lolium perenne and Trifolium pratense grown in two different soils (a sandy silt loam: pH 4, 2.8% OC, no previous 2,4-D exposure and a silt loam: pH 6.5, 4.3% OC, previous 2,4-D exposure) on the mineralization of the herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). We investigated the relationship of mineralization kinetics to dehydrogenase activity, most probable number of 2,4-D degraders (MPN2,4-D) and 2,4-D degrader composition (using sequence analysis of the gene encoding alpha-ketoglutarate/2,4-D dioxygenase (tfdA)). There were significant (P < 0.01) plant-soil interaction effects on MPN2,4-D and 2,4-D mineralization kinetics (e.g. T pratense rhizodeposits enhanced the maximum mineralization rate by 30% in the acid sandy silt loam soil, but not in the neutral silt loam soil). Differences in mineralization kinetics could not be ascribed to 2,4-D degrader composition as both soils had tfdA sequences which clustered with tfdAs representative of two distinct classes of 2,4-D degrader: canonical R. eutropha JMP134-like and oligotrophic alpha-proteobacterial-like. Other explanations for the differential rhizodeposit effect between soils and plants (e.g. nutrient competition effects) are discussed. Our findings stress that complexity of soil-plant-microbe interactions in the rhizosphere make the occurrence and extent of rhizosphere-enhanced xenobiotic degradation difficult to predict.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The toxic effects of two herbicides Round up (gliphosate) and 2,4-D (herbazol) were tested on Pistia stratiotes (Linn. Araceae) samples cultivated in glass aquariums. The gliphosate appears to be more toxic on Pistia Stratiotes than 2,4-D. It was then tested on tilapia Sarotherodon melanotheron juveniles. The lethal dose for tilapia (CL50 = 13.25 mg.l -1) is about 18, 37 and 74 times higher than the glyphosate toxic dose for plants at 1, 2 and 4 meters water depth respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the efficacy of glyphosate and 2,4-D for the Commelina benghalensis, Commelina diffusa and Commelina erecta. Three experiments were conducted in a greenhouse in a completely randomized in factorial scheme 3x7+1 (three herbicides x seven periods - hour after application) for two methods for measuring absorption of herbicides (simulated rain and cut the leaves applied), and a control without application, with four replications. The herbicides used were: glyphosate (1,080 g ha(-1)), 2,4-D amine (720 g ha(-1)) and, mixture glyphosate + 2,4-D (720 + 720 g ha(-1)). It was evaluated seven time intervals for washing (simulating rainfall after application) and cut (simulation abortion as a strategy of defense) the leaves applied: 0, 2, 4, 6, 8, 12 and 24 hours after herbicide application (HHA). The minimum period for absorption of glyphosate alone and in mixture with 2,4 -D presented a satisfactory control (> 90.0%) was around 12 HHA to C. benghalensis, C. diffusa and C. erecta, independently of washing or cut the leaves applied. This observed behavior can influence the time required without rain after herbicide application, besides that, the plants aborted part of the stem with injuries to avoid the herbicide translocation, especially when was used the 2,4-D alone. Concluded that glyphosate alone and in mixture with 2,4-D were efficient and that the differences in the control of species may be due to variation of time to absorb the herbicide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo do presente trabalho foi avaliar a eficácia de glyphosate e 2,4-D, isolados e em mistura, no controle de Commelina villosa. Foram estudadas duas metodologias de avaliação de absorção de herbicidas em oito intervalos de tempo para a lavagem (simulando chuva após a aplicação) e corte (simulando abortamento, como estratégia de defesa) das folhas: 2, 4, 6, 8, 12, 24 e 48 horas após a aplicação dos herbicidas, além de um tratamento sem lavagem ou corte das folhas, em delineamento experimental inteiramente casualizado com quatro repetições, dispostos em um esquema fatorial 3 x 7 + 1 (três herbicidas x sete períodos - horas após a aplicação). Os herbicidas e doses testados foram: glyphosate (1.440 g ha-1), 2,4-D (720 g ha-1) e a mistura glyphosate + 2,4-D (1.080 + 720 g ha-1). A simulação de chuva interferiu de forma negativa no controle das plantas com o herbicida glyphosate. O controle com o herbicida 2,4-D foi influenciado apenas no período de 2 horas. Os períodos de simulação de chuva não influenciaram no controle das plantas com a mistura de glyphosate + 2,4-D. Para o estudo com corte das folhas tratadas, todos os tratamentos independente do período para corte das folhas foram influenciados de forma negativa no controle, sendo que as plantas apresentaram rebrotas quando tratadas com o herbicida 2,4-D isolado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive species generated by Fe0 oxidation promoted by O2 (catalyzed or not by ligands) are able to degrade contaminant compounds like the herbicide 2,4-dichlorophenoxyacetic acid. The degradation of 2,4-D was influenced by the concentrations of zero valent iron (ZVI) and different ligands, as well as by pH. In the absence of ligands, the highest 2,4-D degradation rate was obtained at pH 3, while the highest percentage degradation (50%) was achieved at pH 5 after 120 min of reaction. Among the ligands studied (DTPA, EDTA, glycine, oxalate, and citrate), only ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) significantly enhanced oxidation of 2,4-D. This increase in oxidation was observed at all pH values tested (including neutral to alkaline conditions), indicating the feasibility of the technique for treatment of contaminated water. In the presence of EDTA, the oxidation rate was greater at pH 3 than at pH 5 or 7. Increasing the EDTA concentration increased the rate and percentage of 2,4-D degradation, however increasing the Fe0 concentration resulted in the opposite behavior. It was found that degradation of EDTA and 2,4-D occurred simultaneously, and that the new methodology avoided any 2,4-D removal by adsorption/coprecipitation. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the efficacy of glyphosate and 2,4-D alone and in combination, in the control of Commelina villosa. We studied two methodologies for evaluating herbicide absorption in eight time intervals for washing (simulating rainfall after application) and cutting of leaves (simulating abortion as a defense strategy): 2, 4, 6, 8, 12, 24 and 48 hours after herbicide application, and a treatment without washing or cutting the leaves in a completely randomized design with four replications in a 3 x 7 + 1 factorial design (three herbicides x seven periods – hours after application). Herbicides and doses tested were: glyphosate (1,440 g ha-1), 2,4-D (720 g ha-1) and a mixture of glyphosate + 2,4-D (1,080 + 720 g ha-1). The simulation of rain interfered negatively in the plant control with glyphosate. The control with the herbicide 2,4-D was affected only for the period of 2 hours. Periods of rain simulation did not influence the control of plants with a mixture of glyphosate + 2,4-D. For the study with the cutting of treated leaves, all treatments regardless of the period of cutting the leaves were influenced negatively in terms of plant control, the plants showing regrowth when treated with 2,4-D alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An enzyme which cleaves the benzene ring of 3,5-dichiorocatechol has been purified to homogeneity from Pseudomonas cepacia CSV90, grown with 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole carbon source. The enzyme was a nonheme ferric dioxygenase and catalyzed the intradiol cleavage of all the examined catechol derivatives, 3,5-dichlorocatechol having the highest specificity constant of 7.3 μM−1 s−1 in an air-saturated buffer. No extradiol-cleaving activity was observed. Thus, the enzyme was designated as 3,5-dichlorocatechol 1,2-dioxygenase. The molecular weight of the native enzyme was ascertained to be 56,000 by light scattering method, while the Mr value of the enzyme denatured with 6 M guanidine-HCl or sodium dodecyl sulfate was 29,000 or 31,600, respectively, suggesting that the enzyme was a homodimer. The iron content was estimated to be 0.89 mol per mole of enzyme. The enzyme was deep red and exhibited a broad absorption spectrum with a maximum at around 425 nm, which was bleached by sodium dithionite, and shifted to 515 nm upon anaerobic 3,5-dichlorocatechol binding. The catalytic constant and the Km values for 3,5-dichlorocatechol and oxygen were 34.7 s−1 and 4.4 and 652 μM, respectively, at pH 8 and 25°C. Some heavy metal ions, chelating agents and sulfhydryl reagents inhibited the activity. The NH2-terminal sequence was determined up to 44 amino acid residues and compared with those of the other catechol dioxygenases previously reported.