949 resultados para Diaphragm Rupture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rupture of a light cellophane diaphragm in an expansion tube has been studied by an optical method. The influence of the light diaphragm on test flow generation has long been recognised, however the diaphragm rupture mechanism is less well known. It has been previously postulated that the diaphragm ruptures around its periphery due to the dynamic pressure loading of the shock wave, with the diaphragm material at some stage being removed from the flow to allow the shock to accelerate to the measured speeds downstream. The images obtained in this series of experiments are the first to show the mechanism of diaphragm rupture and mass removal in an expansion tube. A light diaphragm was impulsively loaded via a shock wave and a series of images was recorded holographically throughout the rupture process, showing gradual destruction of the diaphragm. Features such as the diaphragm material, the interface between gases, and a reflected shock were clearly visualised. Both qualitative and quantitative aspects of the rupture dynamics were derived from the images and compared with existing one-dimensional theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A free-piston driver that employs entropy-raising shock processes with diaphragm rupture has been constructed, which promises significant theoretical advantages over isentropic compression. Results from a range of conditions with helium and argon driver gases are reported. Significant performance gains were achieved in some test cases. Heat losses are shown to have a strong effect on driver processes. Measurements compare well with predictions from a quasi-one-dimensional numerical code.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Simulations of a complete reflected shock tunnel facility have been performed with the aim of providing a better understanding of the flow through these facilities. In particular, the analysis is focused on the premature contamination of the test flow with the driver gas. The axisymmetric simulations model the full geometry of the shock tunnel and incorporate an iris-based model of the primary diaphragm rupture mechanics, an ideal secondary diaphragm and account for turbulence in the shock tube boundary layer with the Baldwin-Lomax eddy viscosity model. Two operating conditions were examined: one resulting in an over-tailored mode of operation and the other resulting in approximately tailored operation. The accuracy of the simulations is assessed through comparison with experimental measurements of static pressure, pitot pressure and stagnation temperature. It is shown that the widely-accepted driver gas contamination mechanism in which driver gas 'jets' along the walls through action of the bifurcated foot of the reflected shock, does not directly transport the driver gas to the nozzle at these conditions. Instead, driver gas laden vortices are generated by the bifurcated reflected shock. These vortices prevent jetting of the driver gas along the walls and convect driver gas away from the shock tube wall and downstream into the nozzle. Additional vorticity generated by the interaction of the reflected shock and the contact surface enhances the process in the over-tailored case. However, the basic mechanism appears to operate in a similar way for both the over-tailored and the approximately tailored conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the gas-particle dynamics of a device designed for biological pre-clinical experiments. The device uses transonic/supersonic gas flow to accelerate microparticles such that they penetrate the outer skin layers. By using a shock tube coupled to a correctly expanded nozzle, a quasi-one-dimensional, quasi-steady flow (QSF) is produced to uniformly accelerate the microparticles. The system utilises a microparticle cassette (a diaphragm sealed container) that incorporates a jet mixing mechanism to stir the particles prior to diaphragm rupture. Pressure measurements reveal that a QSF exit period - suitable for uniformly accelerating microparticles - exists between 155 and 220 mus after diaphragm rupture. Immediately preceding the QSF period, a starting process secondary shock was shown to form with its (x,t) trajectory comparing well to theoretical estimates. To characterise the microparticle, flow particle image velocimetry experiments were conducted at the nozzle exit, using particle payloads with varying diameter (2.7-48 mu m), density (600-16,800 kg/m(3)) and mass (0.25-10 mg). The resultant microparticle velocities were temporally uniform. The experiments also show that the starting process does not significantly influence the microparticle nozzle exit velocities. The velocity distribution across the nozzle exit was also uniform for the majority of microparticle types tested. For payload masses typically used in pre-clinical drug and vaccine applications (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress and inflammatory processes strongly contribute to pathogenesis in Duchenne muscular dystrophy (DMD). Based on evidence that excess iron may increase oxidative stress and contribute to the inflammatory response, we investigated whether deferoxamine (DFX), a potent iron chelating agent, reduces oxidative stress and inflammation in the diaphragm (DIA) muscle of mdx mice (an experimental model of DMD). Fourteen-day-old mdx mice received daily intraperitoneal injections of DFX at a dose of 150 mg/kg body weight, diluted in saline, for 14 days. C57BL/10 and control mdx mice received daily intraperitoneal injections of saline only, for 14 days. Grip strength was evaluated as a functional measure, and blood samples were collected for biochemical assessment of muscle fiber degeneration. In addition, the DIA muscle was removed and processed for histopathology and Western blotting analysis. In mdx mice, DFX reduced muscle damage and loss of muscle strength. DFX treatment also resulted in a significant reduction of dystrophic inflammatory processes, as indicated by decreases in the inflammatory area and in NF-κB levels. DFX significantly decreased oxidative damage, as shown by lower levels of 4-hydroxynonenal and a reduction in dihydroethidium staining in the DIA muscle of mdx mice. The results of the present study suggest that DFX may be useful in therapeutic strategies to ameliorate dystrophic muscle pathology, possibly via mechanisms involving oxidative and inflammatory pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and objective: Patients with COPD can have impaired diaphragm mechanics. A new method of assessing the mobility of the diaphragm, using ultrasound, has recently been validated. This study evaluated the relationship between pulmonary function and diaphragm mobility, as well as that between respiratory muscle strength and diaphragm mobility, in COPD patients. Methods: COPD patients with pulmonary hyperinflation (n = 54) and healthy subjects (n = 20) were studied. Patients were tested for pulmonary function, maximal respiratory pressures and diaphragm mobility using ultrasound to measure the craniocaudal displacement of the left branch of the portal vein. Results: COPD patients had less diaphragm mobility than did healthy individuals (36.5 +/- 10.9 mm vs 46.3 +/- 9.5 mm, P = 0.001). In COPD patients, diaphragm mobility correlated strongly with pulmonary function parameters that quantify air trapping (RV: r = -0.60, P < 0.001; RV/TLC: r = -0.76, P < 0.001), moderately with airway obstruction (FEV1: r = 0.55, P < 0.001; airway resistance: r = -0.32, P = 0.02) and weakly with pulmonary hyperinflation (TLC: r = -0.28, P = 0.04). No relationship was observed between diaphragm mobility and respiratory muscle strength (maximal inspiratory pressure: r = -0.11, P = 0.43; maximal expiratory pressure: r = 0.03, P = 0.80). Conclusion: The results of this study suggest that the reduction in diaphragm mobility in COPD patients is mainly due to air trapping and is not influenced by respiratory muscle strength or pulmonary hyperinflation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The USP General Chapter < 2040 > Disintegration and Dissolution of Dietary Supplements introduced a rupture test as a performance test of soft-shell capsules. Traditionally, the disintegration test was used for determining the disintegration time of all solid oral dosage forms. The aim of this investigation was to investigate differences between the rupture test and the disintegration test using soft-shell capsules. Five different soft-shell capsule products were chosen based on their filling contents and treated to simulate a production deficiency. The study design compared capsules as received with capsules that were treated by coating them with the liquid contents of another capsule. The capsules were incubated at room temperature and at 40 degrees C. The tests were repeated after two weeks, and at each time point, twelve capsules of each product were tested using the rupture and the disintegration tests. Six capsules were tested untreated, while the other six capsules were treated. Rupture and disintegration times were recorded as dependent variables in each experiment. Thedata were analyzed using ANOVA. According to the USP definition for disintegration, the rupture of a soft-shell capsule can be seen as fulfilling the disintegration criterion if the capsule contents is a semisolid or liquid. Statistical analysis showed no advantage of the rupture test over the disintegration test. On a product-by-product basis, both tests were sensitive to certain investigated parameters. A noticeable difference between both tests was that in most cases, the rupture test reached the defined endpoint faster than the disintegration test. Soft-shell capsules that are subject to a Quality by Design approach should be tested with both methods to determine which performance test is the most appropriate test for a specific product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The response of the diaphragm to the postural perturbation produced by rapid flexion of the shoulder to a visual stimulus was evaluated in standing subjects. Gastric, oesophageal and transdiaphragmatic pressures were measured together with intramuscular and oesophageal recordings of electromyographic activity (EMG) in the diaphragm. To assess the mechanics of contraction of the diaphragm, dynamic changes in the length of the diaphragm were measured with ultrasonography. 2. With rapid flexion of the shoulder in response to a visual stimulus, EMG-activity in the costal and crural diaphragm occurred about 20 ms prior to the onset of deltoid EMG. This anticipatory contraction occurred irrespective of the phase of respiration in which arm movement began. The onset of diaphragm EMG-coincided with that of transversus abdominis. 3. Gastric and transdiaphragmatic pressures increased in association with the rapid arm flexion by 13.8 +/- 1.9 (mean +/- S.E.M.) and 13.5 +/- 1.8 cmH(2)O, respectively. The increases occurred 49 +/- 4 ms after the onset of diaphragm EMG, but preceded the onset of movement of the limb by 63 +/- 7 ms. 4. Ultrasonographic measurements revealed that the costal diaphragm shortened and then lengthened progressively during the increase in transdiaphragmatic pressure. 5. This study provides definitive evidence that the human diaphragm is involved in the control of postural stability during sudden voluntary movement of the limbs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The co-ordination between respiratory and postural functions of the diaphragm was investigated during repetitive upper Limb movement. It was hypothesised that diaphragm activity would occur either tonically or phasically in association with the forces from each movement and that this activity would combine with phasic respiratory activity. 2. Movements of the upper limb and ribcage were measured while standing subjects performed repetitive upper limb movements 'as fast as possible'. Electromyographic (EMG) recordings of the costal diaphragm were made using intramuscular electrodes in four subjects. Surface electrodes were placed over the deltoid and erector spinae muscles. 3. In contrast to standing at rest, diaphragm activity was present throughout expiration at 78 +/- 17% (mean +/- S.D.) of its peak inspiratory magnitude during repeated upper limb movement. 4. Bursts of deltoid and erector spinae EMG activity occurred at the Limb movement frequency (similar to 2.9 Hz). Although the majority of diaphragm EMG power was at the respiratory frequency (similar to 0.4 Hz), a peak was also present at the movement frequency. This finding was corroborated by averaged EMG activity triggered from upper limb movement. In addition, diaphragm EMG activity was coherent with ribcage motion at the respiratory frequency and with upper limb movement at the movement frequency. 5. The diaphragm response was similar when movement was performed while sitting. In addition, when subjects moved with increasing frequency the peak upper limb acceleration correlated with diaphragm EMG amplitude. These findings support the argument that diaphragm contraction is related to trunk control. 6. The results indicate that activity of human phrenic motoneurones is organised such that it contributes to both posture and respiration during a task which repetitively challenges trunk posture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In humans, when the stability of the trunk is challenged in a controlled manner by repetitive movement of a limb, activity of the diaphragm becomes tonic but is also modulated at the frequency of limb movement. In addition, the tonic activity is modulated by respiration. This study investigated the mechanical output of these components of diaphragm activity. Recordings were made of costal diaphragm, abdominal, and erector spinae muscle electromyographic activity; intra-abdominal, intrathoracic, and transdiaphragmatic pressures; and motion of the rib cage, abdomen, and arm. During limb movement the diaphragm and transversus abdominis were tonically active with added phasic modulation at the frequencies of both respiration and limb movement. Activity of the other trunk muscles was not modulated by respiration. Intra-abdominal pressure was increased during the period of limb movement in proportion to the reactive forces from the movement. These results show that coactivation of the diaphragm and abdominal muscles causes a sustained increase in intra-abdominal pressure, whereas inspiration and expiration are controlled by opposing activity of the diaphragm and abdominal muscles to vary the shape of the pressurized abdominal cavity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Respiratory activity of the diaphragm and other respiratory muscles is normally co-ordinated with their other functions, such as for postural control of the trunk when the limbs move. The integration may occur by summation of two inputs at the respiratory motoneurons. The present study investigated whether postural activity of the diaphragm changed when respiratory drive increased with hypercapnoea. 2. Electromyographic (EMG) recordings of the diaphragm and other trunk muscles were made with intramuscular electrodes in 13 healthy volunteers. Under control conditions and while breathing through increased dead-space,subjects made rapid repetitive arm movements to disturb the stability of the spine for four periods each lasting 10 s, separated by 50 s. 3. End-tidal CO2, and ventilation increased for the first 60-120 s of the trial then reached a plateau. During rapid arm movement at the start of dead-space breathing, diaphragm EMG became tonic with superimposed modulation at the frequencies of respiration and arm movement. However, when the arm was moved after 60 s of hypercapnoea, the tonic diaphragm EMG during expiration and the phasic activity with arm movement were reduced or absent. Similar changes occurred for the expiratory muscle transversus abdominis, but not for the erector spinae. The mean amplitude of intra-abdominal pressure and the phasic changes with arm movement were reduced after 60 s of hypercapnoea. 4. The present data suggest that increased central respiratory drive may attenuate the postural commands reaching motoneurons. This attenuation can affect the key inspiratory and expiratory muscles and is likely to be co-ordinated at a pre-motoneuronal site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tendon rupture has rarely been described in patients with systemic lupus erythematosus. From observation of three cases of Jaccoud`s arthropathy with tendon rupture, and considering that this arthropathy is more related to an inflammatory process of the tendon sheath than to synovitis per se, the intention of this study was to review the cases of tendon rupture in patients with systemic lupus erythematosus, in the hope of determining the frequency of Jaccoud`s arthropathy associated with this complication. Systematic review using MEDLINE, Scielo and LILACS databases (1966 to 2009) and the following keywords: systemic lupus erythematosus, tendon rupture, Jaccoud`s arthropathy. Secondary references were additionally obtained. Additionally, three Brazilian systemic lupus erythematosus patients who developed tendon rupture are described. Only 40 articles obtained fulfilled the previously established criteria. They were all case reports; the number of cases reported was 52 which, together with the three cases presented herein add up to 55 cases. Forty-six patients were women aged between 19 and 71 years, with a mean age of 40.1 +/- 12.4 years, and the average duration of the disease was 10 years. The most frequently observed rupture sites were the patellar and Achilles` tendons. While almost all patients described were on various doses of corticosteroids, 16 patients concomitantly had Jaccoud`s arthropathy (29%). In conclusion, the association between Jaccoud`s arthropathy and tendon rupture in systemic lupus erythematosus has been underestimated. As almost one-third of the systemic lupus erythematosus patients with tendon rupture also have Jaccoud`s arthropathy, this arthropathy may be recognized as risk marker for tendon rupture. Lupus (2010) 19, 247-254.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) are crucial to the development and maintenance of healthy tissue and are mainly involved in extracellular matrix (ECM) remodeling of skeletal muscle. This study evaluated the effects of chronic allergic airway inflammation (CAAI), induced by ovalbumin, and aerobic training in the MMPs activity in mouse diaphragm muscle. Thirty mice were divided into 6 groups: 1) control; 2) ovalbumin; 3) treadmill trained at 50% of maximum speed; 4) ovalbumin and trained at 50%; 5) trained at 75%; 6) ovalbumin and trained at 75%. CAAI did not after MMPs activities in diaphragm muscle. Nevertheless, both treadmill aerobic trainings, associated with CAAI increased the MMP-2 and -1 activities. Furthermore, MMP-9 was not detected in any group. Together, these findings suggest an ECM remodeling in diaphragm muscle of asthmatic mice submitted to physical training. This result may be useful for a better understanding of functional significance of changes in the MMPs activity in response to physical training in asthma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of spontaneous rupture in thin films with tangentially immobile interfaces is presented that emphasizes the theoretical developments of film drainage and corrugation growth through the linearization of lubrication theory in a cylindrical geometry. Spontaneous rupture occurs when corrugations from adjacent interfaces become unstable and grow to a critical thickness. A corrugated interface is composed of a number of waveforms and each waveform becomes unstable at a unique transition thickness. The onset of instability occurs at the maximum transition thickness, and it is shown that only upper and lower bounds of this thickness can be predicted from linear stability analysis. The upper bound is equivalent to the Freakel criterion and is obtained from the zeroth order approximation of the H-3 term in the evolution equation. This criterion is determined solely by the film radius, interfacial tension and Hamaker constant. The lower bound is obtained from the first order approximation of the H-3 term in the evolution equation and is dependent on the film thinning velocity A semi-empirical equation, referred to as the MTR equation, is obtained by combining the drainage theory of Manev et al. [J. Dispersion Sci. Technol., 18 (1997) 769] and the experimental measurements of Radoev et al. [J. Colloid Interface Sci. 95 (1983) 254] and is shown to provide accurate predictions of film thinning velocity near the critical thickness of rupture. The MTR equation permits the prediction of the lower bound of the maximum transition thickness based entirely on film radius, Plateau border radius, interfacial tension, temperature and Hamaker constant. The MTR equation extrapolates to Reynolds equation under conditions when the Plateau border pressure is small, which provides a lower bound for the maximum transition thickness that is equivalent to the criterion of Gumerman and Homsy [Chem. Eng. Commun. 2 (1975) 27]. The relative accuracy of either bound is thought to be dependent on the amplitude of the hydrodynamic corrugations, and a semiempirical correlation is also obtained that permits the amplitude to be calculated as a function of the upper and lower bound of the maximum transition thickness. The relationship between the evolving theoretical developments is demonstrated by three film thickness master curves, which reduce to simple analytical expressions under limiting conditions when the drainage pressure drop is controlled by either the Plateau border capillary pressure or the van der Waals disjoining pressure. The master curves simplify solution of the various theoretical predictions enormously over the entire range of the linear approximation. Finally, it is shown that when the Frenkel criterion is used to assess film stability, recent studies reach conclusions that are contrary to the relevance of spontaneous rupture as a cell-opening mechanism in foams. (C) 2003 Elsevier Science B.V. All rights reserved.