104 resultados para Diabase
Resumo:
Statistical methods of multiple regression analysis, trend surface analysis and principal components analysis were applied to seismographic data recorded during production blasting at a diabase quarry in the urban area of Campinas (SP), Brazil. The purpose of these analyses was to determine the influence of the following variables: distance (D), charge weight per delay (W), and scaled distance (SD) associated with properties of the rock body (orientation, frequency and angle of geological discontinuities; depth of bedrock and thickness of the soil overburden) in the variation of the peak particle velocity (PPV). This approach yielded variables with larger influences (loads) on the variation of ground vibration, as well as behavior and space tendency of this variation. The results showed a better relationship between PPV and D, with D being the most important factor in the attenuation of the ground vibrations. The geological joints and the depth to bedrock have a larger influence than the explosive charges in the variation of the vibration levels, but frequencies appear to be more influenced by the amount of soil overburden.
Resumo:
Samples recovered from Hole 504B during Leg 140 include a number of medium-grained, holocrystalline diabases that appear to represent the cores of thick dikes. The plagioclase and pyroxene in these samples occur in a variety of crystal morphologies. Plagioclase occurs as phenocrysts, microphenocrysts, elongate crystals, skeletal crystals, and branching radial clusters. Pyroxene occurs as phenocrysts, microphenocrysts, ophitic crystals, and poikilitic crystals. Plagioclase compositions became progressively poorer in anorthite and MgO and progressively richer in FeO as crystallization proceeded, while the average grain volume decreased and the aspect ratio of individual grains increased. Pyroxene compositions are largely independent of crystal morphology. The diabase dikes recovered from Hole 504B during Leg 140 appear to have crystallized in situ. Crystal compositions and morphologies are consistent with a rapid cooling rate and solidification times for individual dikes on the order of hours or days. The crystallization rate and nucleation rate of plagioclase lagged behind the cooling rate so that the degree of undercooling progressively increased as crystallization proceeded. Plagioclase crystal morphologies indicate much greater degrees of supersaturation than do pyroxene or olivine crystal morphologies. The 504B diabase magmas appear to have been emplaced with abundant preexisting pyroxene and olivine nuclei, but with few preexisting plagioclase nuclei. The suppression of plagioclase nucleation and crystallization relative to that of pyroxene and olivine could provide a mechanism by which the actual fractionation assemblage is more pyroxene-rich and plagioclase-poor than that predicted from thermodynamic models, or that observed in isothermal crystallization experiments.
Resumo:
We report the major, rare earth, and other trace element compositions of clinopyroxenes from two Leg 140, Hole 504B diabase dikes. These pyroxenes reflect a complex history of crystal growth and magma evolution. The large ranges of composition found reflect incorporation of exotic phenocrysts into the melt, the early formation of crystal clots before dike intrusion during an undercooling event, and in-situ fractionation of melt during and following dike emplacement. Some of the pyroxenes occur in coarse two- and three-phase glomerocrysts, which may be ôprotogabbrosö representing early stages of melt crystallization in the lower crust. Large variations in trace element composition are found. These likely reflect heterogeneous nucleation and growth of plagioclase and pyroxene in the melt, as well as complex interface kinetics that may affect partition coefficients during rapid crystal growth expected during undercooling. This can explain the formation of irregular chemical sector zoning in some equant anhedral phenocrysts. Undercooling of magmas in the lower crust most likely reflects input of fresh hot melt into a stagnating melt-storage zone. Dikes intruded upward from an inflated melt-storage zone during such a cycle are likely to be larger than those intruded from the storage zone between such cycles, when it would be deflated, consistent with the greater overall thickness of the phyric dikes in the Leg 140 section of Hole 504B.
(Table 20) Chemical composition of rocks from the diabase-basaltic complex of the Mariana Island Arc
Resumo:
The diabases cut across the ophiolites as parallel and variably thick dyke-swarms. Geochemistry of the diabases reveals three distinct groups, including a) supra-subduction zone (SSZ) type, which is characterized by marked Nb-anomaly and normal mid-ocean ridge basalt (N-MORB) like HFSE distribution, b) enriched MORB (E-MORB) type, showing some degree of enrichment relative to N-MORB, c) oceanic-island basalt (OIB) type with characteristic hump-backed trace element patterns, coupled with fractionated REE distribution.