970 resultados para Developmental biology
Resumo:
This report describes the road map we followed at our university to accommodate three main factors: financial pressure within the university system; desire to enhance the learning experience of undergraduates; and motivation to increase the prominence of the discipline of developmental biology in our university. We engineered a novel, multi-year undergraduate developmental biology program which was student-oriented, ensuring that students were continually exposed to the underlying principles and philosophy of this discipline throughout their undergraduate career. Among its key features are introductory lectures in core courses in the first year, which emphasize the relevance of developmental biology to tissue engineering, reproductive medicine, therapeutic approaches in medicine, agriculture and aquaculture. State-of-the-art animated computer graphics and images of high visual impact are also used. In addition, students are streamed into the developmental biology track in the second year, using courses like human embryology and courses shared with cell biology, which include practicals based on modern experimental approaches. Finally, fully dedicated third-year courses in developmental biology are undertaken in conjunction with stand-alone practical courses where students experience first-hand work in a research laboratory. Our philosophy is a cradle-to-grave approach to the education of undergraduates so as to prepare highly motivated, enthusiastic and well-educated developmental biologists for entry into graduate programs and ultimately post-doctoral research.
Resumo:
Developmental biology, polymorphism and ecological aspects of Stiretrus decemguttatus (Hemiptera, Pentatomidae), an important predator of cassidine beetles. Stiretrus decemguttatus is an important predator of two species of cassidine beetles, Botanochara sedecimpustulata (Fabricius, 1781) and Zatrephina lineata (Fabricius, 1787) (Coleoptera, Cassidinae), on the Marajó Island, Brazil. It attacks individuals in all development stages, but preys preferentially on late-instar larvae. Its life cycle in the laboratory was 43.70 ± 1.09 days, with an egg incubation period of six days and duration from nymph and adult stages of 16.31 ± 0.11 and 22.10 ± 1.67 days, respectively. The duration of one generation (T) was 12.65 days and the intrinsic population growth rate (r) 0.25. These data reveal the adjustment of the life cycle of S. decemgutattus with those of the two preys, but suggest greater impact on Z. lineata. However, no preference over cassidine species was shown in the laboratory. Up to 17 different color patterns can be found in adults of S. decemguttatus, based on combinations of three basic sets of color markings. Some of them resemble the markings of chrysomelids associated with Ipomoea asarifolia (Convolvulaceae) and are possibly a mimetic ring. Three color patterns were identified in nymphs, none of which was associated with any specific adult color pattern.
Resumo:
This article proposes a comprehensive view of the origin of the mammalian brain. We discuss i) from which region in the brain of a reptilian-like ancestor did the isocortex originate, and ii) the origin of the multilayered structure of the isocortex from a simple-layered structure like that observed in the cortex of present-day reptiles. Regarding question i there have been two alternative hypotheses, one suggesting that most or all the isocortex originated from the dorsal pallium, and the other suggesting that part of the isocortex originated from a ventral pallial component. The latter implies that a massive tangential migration of cells from the ventral pallium to the dorsal pallium takes place in isocortical development, something that has not been shown. Question ii refers to the origin of the six-layered isocortex from a primitive three-layered cortex. It is argued that the superficial isocortical layers can be considered to be an evolutionary acquisition of the mammalian brain, since no equivalent structures can be found in the reptilian brain. Furthermore, a characteristic of the isocortex is that it develops according to an inside-out neurogenetic gradient, in which late-produced cells migrate past layers of early-produced cells. It is proposed that the inside-out neurogenetic gradient was partly achieved by the activation of a signaling pathway associated with the Cdk5 kinase and its activator p35, while an extracellular protein called reelin (secreted in the marginal zone during development) may have prevented migrating cells from penetrating into the developing marginal zone (future layer I).
Resumo:
Evolutionary developmental genetics brings together systematists, morphologists and developmental geneticists; it will therefore impact on each of these component disciplines. The goals and methods of phylogenetic analysis are reviewed here, and the contribution of evolutionary developmental genetics to morphological systematics, in terms of character conceptualisation and primary homology assessment, is discussed. Evolutionary developmental genetics, like its component disciplines phylogenetic systematics and comparative morphology, is concerned with homology concepts. Phylogenetic concepts of homology and their limitations are considered here, and the need for independent homology statements at different levels of biological organisation is evaluated. The role of systematics in evolutionary developmental genetics is outlined. Phylogenetic systematics and comparative morphology will suggest effective sampling strategies to developmental geneticists. Phylogenetic systematics provides hypotheses of character evolution (including parallel evolution and convergence), stimulating investigations into the evolutionary gains and losses of morphologies. Comparative morphology identifies those structures that are not easily amenable to typological categorisation, and that may be of particular interest in terms of developmental genetics. The concepts of latent homology and genetic recall may also prove useful in the evolutionary interpretation of developmental genetic data.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)